Real-time Measurements of Secondary Organic Aerosol Formation and Aging from Ambient Air in an Oxidation Flow Reactor in the Los Angeles Area PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Real-time Measurements of Secondary Organic Aerosol Formation and Aging from Ambient Air in an Oxidation Flow Reactor in the Los Angeles Area PDF full book. Access full book title Real-time Measurements of Secondary Organic Aerosol Formation and Aging from Ambient Air in an Oxidation Flow Reactor in the Los Angeles Area by . Download full books in PDF and EPUB format.

Real-time Measurements of Secondary Organic Aerosol Formation and Aging from Ambient Air in an Oxidation Flow Reactor in the Los Angeles Area

Real-time Measurements of Secondary Organic Aerosol Formation and Aging from Ambient Air in an Oxidation Flow Reactor in the Los Angeles Area PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 23

Book Description


Real-time Measurements of Secondary Organic Aerosol Formation and Aging from Ambient Air in an Oxidation Flow Reactor in the Los Angeles Area

Real-time Measurements of Secondary Organic Aerosol Formation and Aging from Ambient Air in an Oxidation Flow Reactor in the Los Angeles Area PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 23

Book Description


In Situ Secondary Organic Aerosol Formation from Ambient Pine Forest Air Using an Oxidation Flow Reactor

In Situ Secondary Organic Aerosol Formation from Ambient Pine Forest Air Using an Oxidation Flow Reactor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Book Description


Modeling the Formation and Evolution of Secondary Organic Aerosol During CalNex 2010

Modeling the Formation and Evolution of Secondary Organic Aerosol During CalNex 2010 PDF Author: José Luis Jiménez
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages : 120

Book Description


The Aging of Organic Aerosol in the Atmosphere

The Aging of Organic Aerosol in the Atmosphere PDF Author: Sean Herbert Kessler
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Book Description
The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase chemistry or the formation of inorganic compounds. In this work, we endeavor to improve the general understanding of the narrow class of oxidation reactions that occur at the interface between the particle surface and the gas-phase. The heterogeneous oxidation of pure erythritol (C4H1 00 4 ) and levoglucosan (C6H1 00 5) particles by hydroxyl radical (OH) was studied first in order to evaluate the effects of atmospheric aging on the mass and chemical composition of atmospheric organic aerosol, particularly that resembling fresh secondary organic aerosol (SOA) and biomass-burning organic aerosol (BBOA). In contrast to what is generally observed for the heterogeneous oxidation of reduced organics, substantial volatilization is observed in both systems. As a continuation of the heterogeneous oxidation experiments, we also measure the kinetics and products of the aging of highly oxidized organic aerosol, in which submicron particles composed of model oxidized organics -- 1,2,3,4-butanetetracarboxylic acid (C8H100 8), citric acid (C6 H8 0 7), tartaric acid (C4H6 0 6 ), and Suwannee River fulvic acid -- were oxidized by gas-phase OH in the same flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to studies of the less-oxidized model systems, particle mass did not decrease significantly with heterogeneous oxidation, although substantial chemical transformations were observed and characterized. Lastly, the immense complexity inherent in the formation of SOA -- due primarily to the large number of oxidation steps and reaction pathways involved -- has limited the detailed understanding of its underlying chemistry. In order to simplify this inherent complexity, we give over the last portion of this thesis to a novel technique for the formation of SOA through the photolysis of gas-phase alkyl iodides, which generates organic peroxy radicals of known structure. In contrast to standard OH-initiated oxidation experiments, photolytically initiated oxidation forms a limited number of products via a single reactive step. The system in which the photolytic SOA is formed is also repurposed as a generator of organic aerosol for input into a secondary reaction chamber, where the organic particles undergo additional aging by the heterogeneous oxidation mechanism already discussed. Particles exiting this reactor are observed to have become more dramatically oxidized than comparable systems containing SOA formed by gas-phase alkanes undergoing "normal" photo-oxidation by OH, suggesting simultaneously the utility of gas-phase precursor photolysis as an effective experimental platform for studying directly the chemistry involved in atmospheric aerosol formation and also the possibility that heterogeneous processes may play a more significant role in the atmosphere than what is predicted from chamber experiments. Consideration is given for the application of these results to larger-scale experiments, models, and conceptual frameworks.

Laboratory Studies of the Multiday Oxidative Aging of Atmospheric Organic Aerosol

Laboratory Studies of the Multiday Oxidative Aging of Atmospheric Organic Aerosol PDF Author: Christopher Yung-Ta Lim
Publisher:
ISBN:
Category :
Languages : en
Pages : 101

Book Description
Fine particulate matter (PM, or "aerosol") in the atmosphere affects the Earth's radiative balance and is one of the most important risk factors leading to premature mortality worldwide. Thus, understanding the processes that control the loading and chemical composition of PM in the atmosphere is key to understanding air quality and climate. However, the chemistry of organic aerosol (OA), which comprises a significant fraction of submicron atmospheric PM, is immensely complex due to the vast number of organic compounds in the atmosphere and their numerous reaction pathways. Laboratory experiments have generally focused on the initial formation of OA from volatile organic compounds (VOCs), but have neglected processes that can change the composition and loading of OA over longer timescales ("aging"). This thesis describes several laboratory studies that better constrain the effect of two important aging processes over timescales of several days, the oxidation of gas phase species to form secondary OA (condensation) and the reaction of gas phase radicals with organic molecules in the particle phase (heterogeneous oxidation). First, the oxidation of biomass burning emissions is studied by exposing particles and gases present in smoke to hydroxyl radicals (OH). Increases in organic aerosol mass are observed for all fuels burned, and the amount of OA formed is explained well by the extent of aging and the total concentration of measured organic gases. Second, the effect of particle morphology on the rate of heterogeneous oxidation is examined by comparing the oxidation of particles with thin organic coatings to the oxidation of pure organic particles. Results show that morphology can have a strong impact on oxidation kinetics and that particles with high organic surface area to volume ratios can be rapidly oxidized. Third, the molecular products from the heterogeneous OH oxidation of a single model compound (squalane) are measured. Formation of a range of gas-phase oxygenated VOCs is observed, indicating the importance of fragmentation reactions that decrease OA mass, and providing insight into heterogeneous reaction mechanisms. The results from this work emphasize that the concentration and composition of OA can change dramatically over multiple days of atmospheric oxidation.

Chemical Reactor Omnibook- soft cover

Chemical Reactor Omnibook- soft cover PDF Author: Octave Levenspiel
Publisher: Lulu.com
ISBN: 1300991844
Category : Chemical engineering
Languages : en
Pages : 731

Book Description
The Omnibook aims to present the main ideas of reactor design in a simple and direct way. it includes key formulas, brief explanations, practice exercises, problems from experience and it skims over the field touching on all sorts of reaction systems. Most important of all it tries to show the reader how to approach the problems of reactor design and what questions to ask. In effect it tries to show that a common strategy threads its way through all reactor problems, a strategy which involves three factors: identifying the flow patter, knowing the kinetics, and developing the proper performance equation. It is this common strategy which is the heart of Chemical Reaction Engineering and identifies it as a distinct field of study.

OH-initiated Heterogeneous Oxidation of Atmospheric Organic Aerosols

OH-initiated Heterogeneous Oxidation of Atmospheric Organic Aerosols PDF Author: Ingrid Jennifer George
Publisher:
ISBN: 9780494609651
Category :
Languages : en
Pages : 0

Book Description
The chemical aging of organic aerosols by OH-initiated heterogeneous oxidation was investigated using both model organic and ambient aerosol particles. Organic aerosol particles were exposed to OH radicals in an aerosol flow tube and the modification of their chemical composition and particle properties was studied. Overall, this work has shown that OH-initiated heterogeneous oxidation enhanced the degree of oxidation and the Cloud Condensation Nucleus (CCN) activity of organic aerosol particles for equivalent OH exposure timescales of a few days to a week. The modification of the hygroscopicity of model primary and secondary organic aerosols from chemical aging was investigated by measuring the CCN activity of organic aerosols exposed to OH radicals. Primary organic aerosols, initially CCN inactive, became as CCN active as secondary organic aerosols due to heterogeneous reaction, where surface tension reduction played a major role. The CCN activity for model secondary organic aerosols was also enhanced due to OH oxidation, but changes were less dramatic than for the model primary organic aerosols. Aerosol Mass Spectrometer (AMS) measurements showed that the heterogeneous uptake kinetics of OH radicals onto model primary organic aerosols was efficient. The heterogeneous reaction of organic aerosols with OH led to the production of high molecular weight particle-phase species with the addition of multiple oxygenated functional groups. These results were consistent with the observed increase in particle density with OH exposure. With the exception of solid organic aerosols, the particle volume and mass of organic particles were reduced by less than 20% from OH oxidation at high OH exposures due to volatilization of particle-phase reaction products. The degree of oxidation of the organic fraction of urban ambient aerosols was significantly enhanced for an equivalent atmospheric OH exposure time of 4 days for a daily average atmospheric OH concentration of 2x10 6 cm-3. Ambient aerosol particles sampled from a sparsely populated, forested region were initially more oxygenated than the urban aerosol particles and did not become more oxidized from reaction with OH radicals.

Interpretation of Mass Spectra

Interpretation of Mass Spectra PDF Author: Fred Warren McLafferty (Chemiker, USA)
Publisher:
ISBN: 9780805370485
Category : Mass spectrometry
Languages : en
Pages : 278

Book Description


The Formation and Aging of Secondary Organic Aerosol from Alpha-pinene Oxidation

The Formation and Aging of Secondary Organic Aerosol from Alpha-pinene Oxidation PDF Author: Kaytlin Henry
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Aerosol Science

Aerosol Science PDF Author: Ian Colbeck
Publisher: John Wiley & Sons
ISBN: 1119977924
Category : Science
Languages : en
Pages : 522

Book Description
AEROSOL SCIENCE TECHNOLOGY AND APPLICATIONS Aerosols influence many areas of our daily life. They are at the core of environmental problems such as global warming, photochemical smog and poor air quality. They can also have diverse effects on human health, where exposure occurs in both outdoor and indoor environments. However, aerosols can have beneficial effects too; the delivery of drugs to the lungs, the delivery of fuels for combustion and the production of nanomaterials all rely on aerosols. Advances in particle measurement technologies have made it possible to take advantage of rapid changes in both particle size and concentration. Likewise, aerosols can now be produced in a controlled fashion. Reviewing many technological applications together with the current scientific status of aerosol modelling and measurements, this book includes: Satellite aerosol remote sensing The effects of aerosols on climate change Air pollution and health Pharmaceutical aerosols and pulmonary drug delivery Bioaerosols and hospital infections Particle emissions from vehicles The safety of emerging nanomaterials Radioactive aerosols: tracers of atmospheric processes With the importance of this topic brought to the public's attention after the eruption of the Icelandic volcano Eyjafjallajökull, this book provides a timely, concise and accessible overview of the many facets of aerosol science.