Rational Homotopy Theory Ii PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Rational Homotopy Theory Ii PDF full book. Access full book title Rational Homotopy Theory Ii by Steve Halperin. Download full books in PDF and EPUB format.

Rational Homotopy Theory Ii

Rational Homotopy Theory Ii PDF Author: Steve Halperin
Publisher: World Scientific
ISBN: 9814651451
Category : Mathematics
Languages : en
Pages : 449

Book Description
This research monograph is a detailed account with complete proofs of rational homotopy theory for general non-simply connected spaces, based on the minimal models introduced by Sullivan in his original seminal article. Much of the content consists of new results, including generalizations of known results in the simply connected case. The monograph also includes an expanded version of recently published results about the growth and structure of the rational homotopy groups of finite dimensional CW complexes, and concludes with a number of open questions.This monograph is a sequel to the book Rational Homotopy Theory [RHT], published by Springer in 2001, but is self-contained except only that some results from [RHT] are simply quoted without proof.

Rational Homotopy Theory Ii

Rational Homotopy Theory Ii PDF Author: Steve Halperin
Publisher: World Scientific
ISBN: 9814651451
Category : Mathematics
Languages : en
Pages : 449

Book Description
This research monograph is a detailed account with complete proofs of rational homotopy theory for general non-simply connected spaces, based on the minimal models introduced by Sullivan in his original seminal article. Much of the content consists of new results, including generalizations of known results in the simply connected case. The monograph also includes an expanded version of recently published results about the growth and structure of the rational homotopy groups of finite dimensional CW complexes, and concludes with a number of open questions.This monograph is a sequel to the book Rational Homotopy Theory [RHT], published by Springer in 2001, but is self-contained except only that some results from [RHT] are simply quoted without proof.

Rational Homotopy Theory

Rational Homotopy Theory PDF Author: Yves Felix
Publisher: Springer Science & Business Media
ISBN: 0387950680
Category : Mathematics
Languages : en
Pages : 589

Book Description
This is a long awaited book on rational homotopy theory which contains all the main theorems with complete proofs, and more elementary proofs for many results that were proved ten or fifteen years ago. The authors added a frist section on classical algebraic topology to make the book accessible to students with only little background in algebraic topology.

Rational Homotopy Theory and Differential Forms

Rational Homotopy Theory and Differential Forms PDF Author: Phillip Griffiths
Publisher: Springer Science & Business Media
ISBN: 1461484685
Category : Mathematics
Languages : en
Pages : 228

Book Description
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.

Rational Homotopy Theory

Rational Homotopy Theory PDF Author: Yves Felix
Publisher: Springer Science & Business Media
ISBN: 146130105X
Category : Mathematics
Languages : en
Pages : 574

Book Description
Rational homotopy theory is a subfield of algebraic topology. Written by three authorities in the field, this book contains all the main theorems of the field with complete proofs. As both notation and techniques of rational homotopy theory have been considerably simplified, the book presents modern elementary proofs for many results that were proven ten or fifteen years ago.

Homotopy of Operads and Grothendieck-Teichmuller Groups

Homotopy of Operads and Grothendieck-Teichmuller Groups PDF Author: Benoit Fresse
Publisher: American Mathematical Soc.
ISBN: 1470434814
Category : Mathematics
Languages : en
Pages : 581

Book Description
The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.

On PL DeRham Theory and Rational Homotopy Type

On PL DeRham Theory and Rational Homotopy Type PDF Author: Aldridge Knight Bousfield
Publisher: American Mathematical Soc.
ISBN: 0821821792
Category : Mathematics
Languages : en
Pages : 108

Book Description
The rational [bold]PL de Rham theory of Sullivan is developed and generalized, using methods of Quillen's "homotopical algebra." For a field k of characteristic 0, a pair of contravariant adjoint functors A : (Simplicial sets) [right arrow over left arrow] (Commutative DG k-algebras) : F is obtained which pass to the appropriate homotopy categories. When k is the field of rationals, these functors induce equivalence between the appropriate simplicial and algebraic rational homotopy categories. The theory is not restricted to simply connected spaces. It is closely related to the theory of "rational localization" (for nilpotent spaces) and "rational completion" in general.

Algebraic Homotopy

Algebraic Homotopy PDF Author: Hans J. Baues
Publisher: Cambridge University Press
ISBN: 0521333768
Category : Mathematics
Languages : en
Pages : 490

Book Description
This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.

Local Algebra

Local Algebra PDF Author: Jean-Pierre Serre
Publisher: Springer Science & Business Media
ISBN: 3662042037
Category : Mathematics
Languages : en
Pages : 139

Book Description
This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.

Geometric Applications of Homotopy Theory II

Geometric Applications of Homotopy Theory II PDF Author: M.G. Barratt
Publisher: Springer
ISBN: 3540358080
Category : Mathematics
Languages : en
Pages : 498

Book Description


Equivariant Homotopy and Cohomology Theory

Equivariant Homotopy and Cohomology Theory PDF Author: J. Peter May
Publisher: American Mathematical Soc.
ISBN: 0821803190
Category : Mathematics
Languages : en
Pages : 384

Book Description
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.