Rank-Based Methods for Shrinkage and Selection PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Rank-Based Methods for Shrinkage and Selection PDF full book. Access full book title Rank-Based Methods for Shrinkage and Selection by A. K. Md. Ehsanes Saleh. Download full books in PDF and EPUB format.

Rank-Based Methods for Shrinkage and Selection

Rank-Based Methods for Shrinkage and Selection PDF Author: A. K. Md. Ehsanes Saleh
Publisher: John Wiley & Sons
ISBN: 1119625424
Category : Mathematics
Languages : en
Pages : 484

Book Description
Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning

Rank-Based Methods for Shrinkage and Selection

Rank-Based Methods for Shrinkage and Selection PDF Author: A. K. Md. Ehsanes Saleh
Publisher: John Wiley & Sons
ISBN: 1119625424
Category : Mathematics
Languages : en
Pages : 484

Book Description
Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning

Rank-Based Methods for Shrinkage and Selection

Rank-Based Methods for Shrinkage and Selection PDF Author: A. K. Md. Ehsanes Saleh
Publisher: John Wiley & Sons
ISBN: 1119625394
Category : Mathematics
Languages : en
Pages : 484

Book Description
Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning

Robust Rank-Based and Nonparametric Methods

Robust Rank-Based and Nonparametric Methods PDF Author: Regina Y. Liu
Publisher: Springer
ISBN: 3319390651
Category : Mathematics
Languages : en
Pages : 284

Book Description
The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with readers and implemented. This book is developed from the International Conference on Robust Rank-Based and Nonparametric Methods, held at Western Michigan University in April 2015.

 PDF Author:
Publisher: John Wiley & Sons
ISBN:
Category :
Languages : en
Pages : 163

Book Description


Uncertainty Quantification Techniques in Statistics

Uncertainty Quantification Techniques in Statistics PDF Author: Jong-Min Kim
Publisher: MDPI
ISBN: 3039285467
Category : Science
Languages : en
Pages : 128

Book Description
Uncertainty quantification (UQ) is a mainstream research topic in applied mathematics and statistics. To identify UQ problems, diverse modern techniques for large and complex data analyses have been developed in applied mathematics, computer science, and statistics. This Special Issue of Mathematics (ISSN 2227-7390) includes diverse modern data analysis methods such as skew-reflected-Gompertz information quantifiers with application to sea surface temperature records, the performance of variable selection and classification via a rank-based classifier, two-stage classification with SIS using a new filter ranking method in high throughput data, an estimation of sensitive attribute applying geometric distribution under probability proportional to size sampling, combination of ensembles of regularized regression models with resampling-based lasso feature selection in high dimensional data, robust linear trend test for low-coverage next-generation sequence data controlling for covariates, and comparing groups of decision-making units in efficiency based on semiparametric regression.

Tensors for Data Processing

Tensors for Data Processing PDF Author: Yipeng Liu
Publisher: Academic Press
ISBN: 0323859658
Category : Technology & Engineering
Languages : en
Pages : 598

Book Description
Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing Includes a wide range of applications from different disciplines Gives guidance for their application

Variable Ranking by Solution-path Algorithms

Variable Ranking by Solution-path Algorithms PDF Author: Bo Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 40

Book Description
Variable Selection has always been a very important problem in statistics. We often meet situations where a huge data set is given and we want to find out the relationship between the response and the corresponding variables. With a huge number of variables, we often end up with a big model even if we delete those that are insignificant. There are two reasons why we are unsatisfied with a final model with too many variables. The first reason is the prediction accuracy. Though the prediction bias might be small under a big model, the variance is usually very high. The second reason is interpretation. With a large number of variables in the model, it's hard to determine a clear relationship and explain the effects of variables we are interested in. A lot of variable selection methods have been proposed. However, one disadvantage of variable selection is that different sizes of model require different tuning parameters in the analysis, which is hard to choose for non-statisticians. Xin and Zhu advocate variable ranking instead of variable selection. Once variables are ranked properly, we can make the selection by adopting a threshold rule. In this thesis, we try to rank the variables using Least Angle Regression (LARS). Some shrinkage methods like Lasso and LARS can shrink the coefficients to zero. The advantage of this kind of methods is that they can give a solution path which describes the order that variables enter the model. This provides an intuitive way to rank variables based on the path. However, Lasso can sometimes be difficult to apply to variable ranking directly. This is because that in a Lasso solution path, variables might enter the model and then get dropped. This dropping issue makes it hard to rank based on the order of entrance. However, LARS, which is a modified version of Lasso, doesn't have this problem. We'll make use of this property and rank variables using LARS solution path.

Multilevel Modeling Using R

Multilevel Modeling Using R PDF Author: W. Holmes Finch
Publisher: CRC Press
ISBN: 1351062247
Category : Mathematics
Languages : en
Pages : 217

Book Description
Like its bestselling predecessor, Multilevel Modeling Using R, Second Edition provides the reader with a helpful guide to conducting multilevel data modeling using the R software environment. After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models for categorical dependent variables in both single level and multilevel data. New in the Second Edition: Features the use of lmer (instead of lme) and including the most up to date approaches for obtaining confidence intervals for the model parameters. Discusses measures of R2 (the squared multiple correlation coefficient) and overall model fit. Adds a chapter on nonparametric and robust approaches to estimating multilevel models, including rank based, heavy tailed distributions, and the multilevel lasso. Includes a new chapter on multivariate multilevel models. Presents new sections on micro-macro models and multilevel generalized additive models. This thoroughly updated revision gives the reader state-of-the-art tools to launch their own investigations in multilevel modeling and gain insight into their research. About the Authors: W. Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at Ball State University. Jocelyn E. Bolin is a Professor in the Department of Educational Psychology at Ball State University. Ken Kelley is the Edward F. Sorin Society Professor of IT, Analytics and Operations and the Associate Dean for Faculty and Research for the Mendoza College of Business at the University of Notre Dame.

Advances in Information Retrieval

Advances in Information Retrieval PDF Author: Pavel Serdyukov
Publisher: Springer
ISBN: 3642369731
Category : Computers
Languages : en
Pages : 919

Book Description
This book constitutes the proceedings of the 35th European Conference on IR Research, ECIR 2013, held in Moscow, Russia, in March 2013. The 55 full papers, 38 poster papers and 10 demonstrations presented in this volume were carefully reviewed and selected from 287 submissions. The papers are organized in the following topical sections: user aspects; multimedia and cross-media IR; data mining; IR theory and formal models; IR system architectures; classification; Web; event detection; temporal IR, and microblog search. Also included are 4 tutorial and 2 workshop presentations.

Machine Learning and Data Mining in Pattern Recognition

Machine Learning and Data Mining in Pattern Recognition PDF Author: Petra Perner
Publisher: Springer
ISBN: 3319210246
Category : Computers
Languages : en
Pages : 447

Book Description
This book constitutes the refereed proceedings of the 11th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2015, held in Hamburg, Germany in July 2015. The 41 full papers presented were carefully reviewed and selected from 123 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.