Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296
Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Deep Learning through Sparse and Low-Rank Modeling
Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296
Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296
Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Statistical Language and Speech Processing
Author: Pavel Král
Publisher: Springer
ISBN: 3319459252
Category : Computers
Languages : en
Pages : 152
Book Description
This book constitutes the refereed proceedings of the 4th International Conference on Statistical Language and Speech Processing, SLSP 2016, held in Pilsen, Czech Republic, in October 2016. The 11 full papers presented together with two invited talks were carefully reviewed and selected from 38 submissions. The papers cover topics such as anaphora and coreference resolution; authorship identification, plagiarism and spam filtering; computer-aided translation; corpora and language resources; data mining and semantic web; information extraction; information retrieval; knowledge representation and ontologies; lexicons and dictionaries; machine translation; multimodal technologies; natural language understanding; neural representation of speech and language; opinion mining and sentiment analysis; parsing; part-of-speech tagging; question and answering systems; semantic role labeling; speaker identification and verification; speech and language generation; speech recognition; speech synthesis; speech transcription; speech correction; spoken dialogue systems; term extraction; text categorization; test summarization; user modeling.
Publisher: Springer
ISBN: 3319459252
Category : Computers
Languages : en
Pages : 152
Book Description
This book constitutes the refereed proceedings of the 4th International Conference on Statistical Language and Speech Processing, SLSP 2016, held in Pilsen, Czech Republic, in October 2016. The 11 full papers presented together with two invited talks were carefully reviewed and selected from 38 submissions. The papers cover topics such as anaphora and coreference resolution; authorship identification, plagiarism and spam filtering; computer-aided translation; corpora and language resources; data mining and semantic web; information extraction; information retrieval; knowledge representation and ontologies; lexicons and dictionaries; machine translation; multimodal technologies; natural language understanding; neural representation of speech and language; opinion mining and sentiment analysis; parsing; part-of-speech tagging; question and answering systems; semantic role labeling; speaker identification and verification; speech and language generation; speech recognition; speech synthesis; speech transcription; speech correction; spoken dialogue systems; term extraction; text categorization; test summarization; user modeling.
Natural Language Processing: Concepts, Methodologies, Tools, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799809528
Category : Computers
Languages : en
Pages : 1704
Book Description
As technology continues to become more sophisticated, a computer’s ability to understand, interpret, and manipulate natural language is also accelerating. Persistent research in the field of natural language processing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror natural language processes that have existed for centuries. Natural Language Processing: Concepts, Methodologies, Tools, and Applications is a vital reference source on the latest concepts, processes, and techniques for communication between computers and humans. Highlighting a range of topics such as machine learning, computational linguistics, and semantic analysis, this multi-volume book is ideally designed for computer engineers, computer and software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of natural language processing.
Publisher: IGI Global
ISBN: 1799809528
Category : Computers
Languages : en
Pages : 1704
Book Description
As technology continues to become more sophisticated, a computer’s ability to understand, interpret, and manipulate natural language is also accelerating. Persistent research in the field of natural language processing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror natural language processes that have existed for centuries. Natural Language Processing: Concepts, Methodologies, Tools, and Applications is a vital reference source on the latest concepts, processes, and techniques for communication between computers and humans. Highlighting a range of topics such as machine learning, computational linguistics, and semantic analysis, this multi-volume book is ideally designed for computer engineers, computer and software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of natural language processing.
Active Learning
Author: Sílvio Manuel Brito
Publisher: BoD – Books on Demand
ISBN: 1839622431
Category : Education
Languages : en
Pages : 164
Book Description
Active learning is now a form of learning that accompanies the knowledge evolution that challenges the learner to promote it, but also encourages him to investigate and become emotionally involved in the task. The great key to obtaining this behavior successfully depends, therefore, on the subject's involvement and ability to undertake, so that active learning becomes emotional entrepreneurial learning that generates new ideas and new forms of knowledge. From memorization, we move on to inquiry, from questioning to constructive participation, from hypostasis to problem-solving, from generalization to critical thinking. When we look at this book, we see real examples, concrete, and senses, from the most important act of human nature: learning!
Publisher: BoD – Books on Demand
ISBN: 1839622431
Category : Education
Languages : en
Pages : 164
Book Description
Active learning is now a form of learning that accompanies the knowledge evolution that challenges the learner to promote it, but also encourages him to investigate and become emotionally involved in the task. The great key to obtaining this behavior successfully depends, therefore, on the subject's involvement and ability to undertake, so that active learning becomes emotional entrepreneurial learning that generates new ideas and new forms of knowledge. From memorization, we move on to inquiry, from questioning to constructive participation, from hypostasis to problem-solving, from generalization to critical thinking. When we look at this book, we see real examples, concrete, and senses, from the most important act of human nature: learning!
Computer Vision – ECCV 2022
Author: Shai Avidan
Publisher: Springer Nature
ISBN: 3031200446
Category : Computers
Languages : en
Pages : 815
Book Description
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Publisher: Springer Nature
ISBN: 3031200446
Category : Computers
Languages : en
Pages : 815
Book Description
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Sparse and Redundant Representations
Author: Michael Elad
Publisher: Springer Science & Business Media
ISBN: 1441970118
Category : Mathematics
Languages : en
Pages : 376
Book Description
A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.
Publisher: Springer Science & Business Media
ISBN: 1441970118
Category : Mathematics
Languages : en
Pages : 376
Book Description
A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.
Representation Learning for Natural Language Processing
Author: Zhiyuan Liu
Publisher: Springer Nature
ISBN: 9819916003
Category : Computers
Languages : en
Pages : 535
Book Description
This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book.
Publisher: Springer Nature
ISBN: 9819916003
Category : Computers
Languages : en
Pages : 535
Book Description
This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book.
Mathematical Foundations of Speech and Language Processing
Author: Mark Johnson
Publisher: Springer Science & Business Media
ISBN: 1441990178
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.
Publisher: Springer Science & Business Media
ISBN: 1441990178
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.
Emerging Applications of Natural Language Processing: Concepts and New Research
Author: Bandyopadhyay, Sivaji
Publisher: IGI Global
ISBN: 1466621702
Category : Computers
Languages : en
Pages : 389
Book Description
"This book provides pertinent and vital information that researchers, postgraduate, doctoral students, and practitioners are seeking for learning about the latest discoveries and advances in NLP methodologies and applications of NLP"--Provided by publisher.
Publisher: IGI Global
ISBN: 1466621702
Category : Computers
Languages : en
Pages : 389
Book Description
"This book provides pertinent and vital information that researchers, postgraduate, doctoral students, and practitioners are seeking for learning about the latest discoveries and advances in NLP methodologies and applications of NLP"--Provided by publisher.
Representation Learning for Natural Language Processing
Author: Zhiyuan Liu
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319
Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319
Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.