Author: Rens van de Schoot
Publisher: Routledge
ISBN: 1000760944
Category : Psychology
Languages : en
Pages : 270
Book Description
Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.
Small Sample Size Solutions
Author: Rens van de Schoot
Publisher: Routledge
ISBN: 1000760944
Category : Psychology
Languages : en
Pages : 270
Book Description
Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.
Publisher: Routledge
ISBN: 1000760944
Category : Psychology
Languages : en
Pages : 270
Book Description
Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.
Methods of Randomization in Experimental Design
Author: Valentim R. Alferes
Publisher: SAGE
ISBN: 1452202923
Category : Psychology
Languages : en
Pages : 209
Book Description
This text provides a conceptual systematization and a practical tool for the randomization of between-subjects and within-subjects experimental designs.
Publisher: SAGE
ISBN: 1452202923
Category : Psychology
Languages : en
Pages : 209
Book Description
This text provides a conceptual systematization and a practical tool for the randomization of between-subjects and within-subjects experimental designs.
Encyclopedia of Research Design
Author: Neil J. Salkind
Publisher: SAGE
ISBN: 1412961270
Category : Philosophy
Languages : en
Pages : 1779
Book Description
"Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.
Publisher: SAGE
ISBN: 1412961270
Category : Philosophy
Languages : en
Pages : 1779
Book Description
"Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.
The Design of Experiments
Author: Sir Ronald Aylmer Fisher
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 248
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 248
Book Description
Statistical Design and Analysis of Biological Experiments
Author: Hans-Michael Kaltenbach
Publisher: Springer Nature
ISBN: 3030696413
Category : Mathematics
Languages : en
Pages : 281
Book Description
This richly illustrated book provides an overview of the design and analysis of experiments with a focus on non-clinical experiments in the life sciences, including animal research. It covers the most common aspects of experimental design such as handling multiple treatment factors and improving precision. In addition, it addresses experiments with large numbers of treatment factors and response surface methods for optimizing experimental conditions or biotechnological yields. The book emphasizes the estimation of effect sizes and the principled use of statistical arguments in the broader scientific context. It gradually transitions from classical analysis of variance to modern linear mixed models, and provides detailed information on power analysis and sample size determination, including ‘portable power’ formulas for making quick approximate calculations. In turn, detailed discussions of several real-life examples illustrate the complexities and aberrations that can arise in practice. Chiefly intended for students, teachers and researchers in the fields of experimental biology and biomedicine, the book is largely self-contained and starts with the necessary background on basic statistical concepts. The underlying ideas and necessary mathematics are gradually introduced in increasingly complex variants of a single example. Hasse diagrams serve as a powerful method for visualizing and comparing experimental designs and deriving appropriate models for their analysis. Manual calculations are provided for early examples, allowing the reader to follow the analyses in detail. More complex calculations rely on the statistical software R, but are easily transferable to other software. Though there are few prerequisites for effectively using the book, previous exposure to basic statistical ideas and the software R would be advisable.
Publisher: Springer Nature
ISBN: 3030696413
Category : Mathematics
Languages : en
Pages : 281
Book Description
This richly illustrated book provides an overview of the design and analysis of experiments with a focus on non-clinical experiments in the life sciences, including animal research. It covers the most common aspects of experimental design such as handling multiple treatment factors and improving precision. In addition, it addresses experiments with large numbers of treatment factors and response surface methods for optimizing experimental conditions or biotechnological yields. The book emphasizes the estimation of effect sizes and the principled use of statistical arguments in the broader scientific context. It gradually transitions from classical analysis of variance to modern linear mixed models, and provides detailed information on power analysis and sample size determination, including ‘portable power’ formulas for making quick approximate calculations. In turn, detailed discussions of several real-life examples illustrate the complexities and aberrations that can arise in practice. Chiefly intended for students, teachers and researchers in the fields of experimental biology and biomedicine, the book is largely self-contained and starts with the necessary background on basic statistical concepts. The underlying ideas and necessary mathematics are gradually introduced in increasingly complex variants of a single example. Hasse diagrams serve as a powerful method for visualizing and comparing experimental designs and deriving appropriate models for their analysis. Manual calculations are provided for early examples, allowing the reader to follow the analyses in detail. More complex calculations rely on the statistical software R, but are easily transferable to other software. Though there are few prerequisites for effectively using the book, previous exposure to basic statistical ideas and the software R would be advisable.
ILAR News
Design of Comparative Experiments
Author: R. A. Bailey
Publisher: Cambridge University Press
ISBN: 1139469916
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book should be on the shelf of every practising statistician who designs experiments. Good design considers units and treatments first, and then allocates treatments to units. It does not choose from a menu of named designs. This approach requires a notation for units that does not depend on the treatments applied. Most structure on the set of observational units, or on the set of treatments, can be defined by factors. This book develops a coherent framework for thinking about factors and their relationships, including the use of Hasse diagrams. These are used to elucidate structure, calculate degrees of freedom and allocate treatment subspaces to appropriate strata. Based on a one-term course the author has taught since 1989, the book is ideal for advanced undergraduate and beginning graduate courses. Examples, exercises and discussion questions are drawn from a wide range of real applications: from drug development, to agriculture, to manufacturing.
Publisher: Cambridge University Press
ISBN: 1139469916
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book should be on the shelf of every practising statistician who designs experiments. Good design considers units and treatments first, and then allocates treatments to units. It does not choose from a menu of named designs. This approach requires a notation for units that does not depend on the treatments applied. Most structure on the set of observational units, or on the set of treatments, can be defined by factors. This book develops a coherent framework for thinking about factors and their relationships, including the use of Hasse diagrams. These are used to elucidate structure, calculate degrees of freedom and allocate treatment subspaces to appropriate strata. Based on a one-term course the author has taught since 1989, the book is ideal for advanced undergraduate and beginning graduate courses. Examples, exercises and discussion questions are drawn from a wide range of real applications: from drug development, to agriculture, to manufacturing.
Design and Analysis of Experiments
Author: Douglas C. Montgomery
Publisher: Wiley
ISBN: 9780471661597
Category : Experimental design
Languages : en
Pages : 0
Book Description
This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
Publisher: Wiley
ISBN: 9780471661597
Category : Experimental design
Languages : en
Pages : 0
Book Description
This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
Statistical Design
Author: George Casella
Publisher: Springer Science & Business Media
ISBN: 0387759646
Category : Mathematics
Languages : en
Pages : 325
Book Description
Statistical design is one of the fundamentals of our subject, being at the core of the growth of statistics during the previous century. In this book the basic theoretical underpinnings are covered. It describes the principles that drive good designs and good statistics. Design played a key role in agricultural statistics and set down principles of good practice, principles that still apply today. Statistical design is all about understanding where the variance comes from, and making sure that is where the replication is. Indeed, it is probably correct to say that these principles are even more important today.
Publisher: Springer Science & Business Media
ISBN: 0387759646
Category : Mathematics
Languages : en
Pages : 325
Book Description
Statistical design is one of the fundamentals of our subject, being at the core of the growth of statistics during the previous century. In this book the basic theoretical underpinnings are covered. It describes the principles that drive good designs and good statistics. Design played a key role in agricultural statistics and set down principles of good practice, principles that still apply today. Statistical design is all about understanding where the variance comes from, and making sure that is where the replication is. Indeed, it is probably correct to say that these principles are even more important today.
Design and Analysis of Experiments
Author: Oscar Kempthorne
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 664
Book Description
The principles of experimental design. An introduction to the therory of least squares. The general lenear hypothesis or multiple regression and the analysis of variance. The analysis of multipli classifications. Randomization. The valdity of analysis of randomized experiments. Randomized. Latin squares. Plot technique. The sensitivity of randomized blook and latin square experiments. Experiments involving sevaral factors. Confonding in 2 factorial experiments. Partial confounding in 2 factorial experiments. Experiments involving factors with 3 levels. The general p factorial system. Other factorial experiments. Split-plot experiments. Fractional replication. The general case of fractional replication. Quasifactorial or latice and incomplete block designs. Lattice designs. Lattice designs with two restrictions. Rectangular lattices. Balanced incomplete block designs. Partially balanced incomplete block designs.Experiments on infinite populations and groups of experiments. Treatments applied in sequence.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 664
Book Description
The principles of experimental design. An introduction to the therory of least squares. The general lenear hypothesis or multiple regression and the analysis of variance. The analysis of multipli classifications. Randomization. The valdity of analysis of randomized experiments. Randomized. Latin squares. Plot technique. The sensitivity of randomized blook and latin square experiments. Experiments involving sevaral factors. Confonding in 2 factorial experiments. Partial confounding in 2 factorial experiments. Experiments involving factors with 3 levels. The general p factorial system. Other factorial experiments. Split-plot experiments. Fractional replication. The general case of fractional replication. Quasifactorial or latice and incomplete block designs. Lattice designs. Lattice designs with two restrictions. Rectangular lattices. Balanced incomplete block designs. Partially balanced incomplete block designs.Experiments on infinite populations and groups of experiments. Treatments applied in sequence.