Author: R.G. Athay
Publisher: Springer Science & Business Media
ISBN: 9401028885
Category : Science
Languages : en
Pages : 275
Book Description
The usual book on the theory of spectral line formation begins with an in-depth dis cussion of radiation transfer, including the elegant methods of obtaining analytical solutions for special cases, and of the physics of line broadening. Neither of those features will be found in this book. It is assumed that the reader is already familiar with the essentials of transport theory and of line broadening and is ready to investi gate some of the particular applications of the theory to the flow of line photons through the outer layers of a star, or other tenuous media. The main thrust of this book is toward the compilation and presentation of a vast quantity of computational material available to the author in the form of computer output. The material presented represents a highly filtered sample of the published work in this subject plus an extensive set of previously unpublished results. To present large quantities of computer output in an intelligible and efficient way is a difficult task, for which I have found no really satisfactory solution. Chapters III and IV, in particular, contain almost exclusively this type of presentation. The reader may find these chapters somewhat tedious because of the level of condensation of the material. I have tried to reach a reasonable balance between over condensation and excessive detail, which in the long run may be irrelevant.
Radiation Transport in Spectral Lines
Author: R.G. Athay
Publisher: Springer Science & Business Media
ISBN: 9401028885
Category : Science
Languages : en
Pages : 275
Book Description
The usual book on the theory of spectral line formation begins with an in-depth dis cussion of radiation transfer, including the elegant methods of obtaining analytical solutions for special cases, and of the physics of line broadening. Neither of those features will be found in this book. It is assumed that the reader is already familiar with the essentials of transport theory and of line broadening and is ready to investi gate some of the particular applications of the theory to the flow of line photons through the outer layers of a star, or other tenuous media. The main thrust of this book is toward the compilation and presentation of a vast quantity of computational material available to the author in the form of computer output. The material presented represents a highly filtered sample of the published work in this subject plus an extensive set of previously unpublished results. To present large quantities of computer output in an intelligible and efficient way is a difficult task, for which I have found no really satisfactory solution. Chapters III and IV, in particular, contain almost exclusively this type of presentation. The reader may find these chapters somewhat tedious because of the level of condensation of the material. I have tried to reach a reasonable balance between over condensation and excessive detail, which in the long run may be irrelevant.
Publisher: Springer Science & Business Media
ISBN: 9401028885
Category : Science
Languages : en
Pages : 275
Book Description
The usual book on the theory of spectral line formation begins with an in-depth dis cussion of radiation transfer, including the elegant methods of obtaining analytical solutions for special cases, and of the physics of line broadening. Neither of those features will be found in this book. It is assumed that the reader is already familiar with the essentials of transport theory and of line broadening and is ready to investi gate some of the particular applications of the theory to the flow of line photons through the outer layers of a star, or other tenuous media. The main thrust of this book is toward the compilation and presentation of a vast quantity of computational material available to the author in the form of computer output. The material presented represents a highly filtered sample of the published work in this subject plus an extensive set of previously unpublished results. To present large quantities of computer output in an intelligible and efficient way is a difficult task, for which I have found no really satisfactory solution. Chapters III and IV, in particular, contain almost exclusively this type of presentation. The reader may find these chapters somewhat tedious because of the level of condensation of the material. I have tried to reach a reasonable balance between over condensation and excessive detail, which in the long run may be irrelevant.
Spectral Line Formation
Author: John T. Jefferies
Publisher:
ISBN:
Category : Astronomical spectroscopy
Languages : en
Pages : 328
Book Description
The purpose of this book is to discuss certain aspects of the theory of the formation and analysis of the line spectrum of a hot gas. The underlying motivation for most of the studies discussed here lies in a desire to develop a physically sound procedure for interpreting the line spectrum of a stellar atmosphere ; correspondingly, the major emphasis is given to problems encountered in astrophysics.
Publisher:
ISBN:
Category : Astronomical spectroscopy
Languages : en
Pages : 328
Book Description
The purpose of this book is to discuss certain aspects of the theory of the formation and analysis of the line spectrum of a hot gas. The underlying motivation for most of the studies discussed here lies in a desire to develop a physically sound procedure for interpreting the line spectrum of a stellar atmosphere ; correspondingly, the major emphasis is given to problems encountered in astrophysics.
Transfer of Radiation in Spectral Lines
Author: Vsevolod Vladimirovich Ivanov
Publisher:
ISBN:
Category : Astrophysics
Languages : en
Pages : 480
Book Description
Publisher:
ISBN:
Category : Astrophysics
Languages : en
Pages : 480
Book Description
Progress in Stellar Spectral Line Formation Theory
Author: J.E. Beckman
Publisher: Springer Science & Business Media
ISBN: 9400953720
Category : Science
Languages : en
Pages : 452
Book Description
Spectral line formation theory is at the heart of astrophysical diagnostic. Our knowledge of abundances, in both stellar and interstellar contexts, comes almost enti rely from line analysis, as does a major fraction of our ability to model stellar atmospheres. As new facets of the universe become observable so the techniques of high reso lution spectroscopy are brought to bear, with great reward. Improved instruments, such as echelle spectrographs, employ ing detectors of high quantum efficiency, have revolutioned our ability to observe high quality line profiles, although until now this ability has been confined to the brightest stars. Fabry-Perot interferometers and their modern deriva tives are bringing new ranges of resolving power to studies of atomic and ionic interstellar lines, and of course radio techniques imply exceedingly high resolution for the cool interstellar medium of molecules and radicals. Telescopes in space are extending the spectral range of these types of observations. Already the Copernicus and IUE high resolution spectrographs have given us a tantalizing glimmer of what it will be like to obtain ultraviolet spectra with resolution and signal to noise ratio approaching those obtainable on the ground. Fairly soon Space Telescope will be producing high resolution spectroscopic data of unparal leled quali ty and distance range. As often happens in astro physics the challenge is now coming from the observers to the theorists to provide interpretational tools which are adequate to the state of the data.
Publisher: Springer Science & Business Media
ISBN: 9400953720
Category : Science
Languages : en
Pages : 452
Book Description
Spectral line formation theory is at the heart of astrophysical diagnostic. Our knowledge of abundances, in both stellar and interstellar contexts, comes almost enti rely from line analysis, as does a major fraction of our ability to model stellar atmospheres. As new facets of the universe become observable so the techniques of high reso lution spectroscopy are brought to bear, with great reward. Improved instruments, such as echelle spectrographs, employ ing detectors of high quantum efficiency, have revolutioned our ability to observe high quality line profiles, although until now this ability has been confined to the brightest stars. Fabry-Perot interferometers and their modern deriva tives are bringing new ranges of resolving power to studies of atomic and ionic interstellar lines, and of course radio techniques imply exceedingly high resolution for the cool interstellar medium of molecules and radicals. Telescopes in space are extending the spectral range of these types of observations. Already the Copernicus and IUE high resolution spectrographs have given us a tantalizing glimmer of what it will be like to obtain ultraviolet spectra with resolution and signal to noise ratio approaching those obtainable on the ground. Fairly soon Space Telescope will be producing high resolution spectroscopic data of unparal leled quali ty and distance range. As often happens in astro physics the challenge is now coming from the observers to the theorists to provide interpretational tools which are adequate to the state of the data.
Radiative Processes in Astrophysics
Author: George B. Rybicki
Publisher: John Wiley & Sons
ISBN: 352761818X
Category : Science
Languages : en
Pages : 402
Book Description
Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.
Publisher: John Wiley & Sons
ISBN: 352761818X
Category : Science
Languages : en
Pages : 402
Book Description
Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.
Catalog of National Bureau of Standards Publications, 1966-1976: Key word index
Author: United States. National Bureau of Standards. Technical Information and Publications Division
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 788
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 788
Book Description
The Transfer of Spectral Line Radiation
Author: C. J. Cannon
Publisher: Cambridge University Press
ISBN: 0521106028
Category : Science
Languages : en
Pages : 557
Book Description
Originally published in 1985, this monograph describes the interaction of radiation with plasma. Using an approach that is particularly relevant to the interpretation of data from laboratory plasmas or stellar atmospheres, the author sets out the physics and mathematics of the interaction of photons with atoms, molecules, ions and electrons. The emphasis throughout is on relating the formal mathematics to the real world of observable properties and interpretation. The equation of radiative transfer for a two-level atom is solved exactly by two distinct methods. Techniques for solving more realistic problems are then presented. This leads to the main thrust of the book which gives a detailed analysis of the matter - radiation interaction.
Publisher: Cambridge University Press
ISBN: 0521106028
Category : Science
Languages : en
Pages : 557
Book Description
Originally published in 1985, this monograph describes the interaction of radiation with plasma. Using an approach that is particularly relevant to the interpretation of data from laboratory plasmas or stellar atmospheres, the author sets out the physics and mathematics of the interaction of photons with atoms, molecules, ions and electrons. The emphasis throughout is on relating the formal mathematics to the real world of observable properties and interpretation. The equation of radiative transfer for a two-level atom is solved exactly by two distinct methods. Techniques for solving more realistic problems are then presented. This leads to the main thrust of the book which gives a detailed analysis of the matter - radiation interaction.
Radiative Transfer
Author: Hélène Frisch
Publisher: Springer Nature
ISBN: 3030952479
Category : Science
Languages : en
Pages : 611
Book Description
This book discusses analytic and asymptotic methods relevant to radiative transfer in dilute media, such as stellar and planetary atmospheres. Several methods, providing exact expressions for the radiation field in a semi-infinite atmosphere, are described in detail and applied to unpolarized and polarized continuous spectra and spectral lines. Among these methods, the Wiener–Hopf method, introduced in 1931 for a stellar atmospheric problem, is used today in fields such as solid mechanics, diffraction theory, or mathematical finance. Asymptotic analyses are carried out on unpolarized and polarized radiative transfer equations and on a discrete time random walk. Applicable when photons undergo a large number of scatterings, they provide criteria to distinguish between large-scale diffusive and non-diffusive behaviors, typical scales of variation of the radiation field, such as the thermalization length, and specific descriptions for regions close and far from boundaries. Its well organized synthetic view of exact and asymptotic methods of radiative transfer makes this book a valuable resource for both graduate students and professional scientists in astrophysics and beyond.
Publisher: Springer Nature
ISBN: 3030952479
Category : Science
Languages : en
Pages : 611
Book Description
This book discusses analytic and asymptotic methods relevant to radiative transfer in dilute media, such as stellar and planetary atmospheres. Several methods, providing exact expressions for the radiation field in a semi-infinite atmosphere, are described in detail and applied to unpolarized and polarized continuous spectra and spectral lines. Among these methods, the Wiener–Hopf method, introduced in 1931 for a stellar atmospheric problem, is used today in fields such as solid mechanics, diffraction theory, or mathematical finance. Asymptotic analyses are carried out on unpolarized and polarized radiative transfer equations and on a discrete time random walk. Applicable when photons undergo a large number of scatterings, they provide criteria to distinguish between large-scale diffusive and non-diffusive behaviors, typical scales of variation of the radiation field, such as the thermalization length, and specific descriptions for regions close and far from boundaries. Its well organized synthetic view of exact and asymptotic methods of radiative transfer makes this book a valuable resource for both graduate students and professional scientists in astrophysics and beyond.
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 790
Book Description
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 790
Book Description
Publications
Author: United States. National Bureau of Standards
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 752
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 752
Book Description