Author: Joseph Schmuller
Publisher: John Wiley & Sons
ISBN: 1119446171
Category : Computers
Languages : en
Pages : 384
Book Description
Make the most of R’s extensive toolset R Projects For Dummies offers a unique learn-by-doing approach. You will increase the depth and breadth of your R skillset by completing a wide variety of projects. By using R’s graphics, interactive, and machine learning tools, you’ll learn to apply R’s extensive capabilities in an array of scenarios. The depth of the project experience is unmatched by any other content online or in print. And you just might increase your statistics knowledge along the way, too! R is a free tool, and it’s the basis of a huge amount of work in data science. It's taking the place of costly statistical software that sometimes takes a long time to learn. One reason is that you can use just a few R commands to create sophisticated analyses. Another is that easy-to-learn R graphics enable you make the results of those analyses available to a wide audience. This book will help you sharpen your skills by applying them in the context of projects with R, including dashboards, image processing, data reduction, mapping, and more. Appropriate for R users at all levels Helps R programmers plan and complete their own projects Focuses on R functions and packages Shows how to carry out complex analyses by just entering a few commands If you’re brand new to R or just want to brush up on your skills, R Projects For Dummies will help you complete your projects with ease.
R Projects For Dummies
Author: Joseph Schmuller
Publisher: John Wiley & Sons
ISBN: 111944618X
Category : Computers
Languages : en
Pages : 375
Book Description
Make the most of R’s extensive toolset R Projects For Dummies offers a unique learn-by-doing approach. You will increase the depth and breadth of your R skillset by completing a wide variety of projects. By using R’s graphics, interactive, and machine learning tools, you’ll learn to apply R’s extensive capabilities in an array of scenarios. The depth of the project experience is unmatched by any other content online or in print. And you just might increase your statistics knowledge along the way, too! R is a free tool, and it’s the basis of a huge amount of work in data science. It's taking the place of costly statistical software that sometimes takes a long time to learn. One reason is that you can use just a few R commands to create sophisticated analyses. Another is that easy-to-learn R graphics enable you make the results of those analyses available to a wide audience. This book will help you sharpen your skills by applying them in the context of projects with R, including dashboards, image processing, data reduction, mapping, and more. Appropriate for R users at all levels Helps R programmers plan and complete their own projects Focuses on R functions and packages Shows how to carry out complex analyses by just entering a few commands If you’re brand new to R or just want to brush up on your skills, R Projects For Dummies will help you complete your projects with ease.
Publisher: John Wiley & Sons
ISBN: 111944618X
Category : Computers
Languages : en
Pages : 375
Book Description
Make the most of R’s extensive toolset R Projects For Dummies offers a unique learn-by-doing approach. You will increase the depth and breadth of your R skillset by completing a wide variety of projects. By using R’s graphics, interactive, and machine learning tools, you’ll learn to apply R’s extensive capabilities in an array of scenarios. The depth of the project experience is unmatched by any other content online or in print. And you just might increase your statistics knowledge along the way, too! R is a free tool, and it’s the basis of a huge amount of work in data science. It's taking the place of costly statistical software that sometimes takes a long time to learn. One reason is that you can use just a few R commands to create sophisticated analyses. Another is that easy-to-learn R graphics enable you make the results of those analyses available to a wide audience. This book will help you sharpen your skills by applying them in the context of projects with R, including dashboards, image processing, data reduction, mapping, and more. Appropriate for R users at all levels Helps R programmers plan and complete their own projects Focuses on R functions and packages Shows how to carry out complex analyses by just entering a few commands If you’re brand new to R or just want to brush up on your skills, R Projects For Dummies will help you complete your projects with ease.
R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Modern Data Science with R
Author: Benjamin S. Baumer
Publisher: CRC Press
ISBN: 0429575394
Category : Business & Economics
Languages : en
Pages : 830
Book Description
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
Publisher: CRC Press
ISBN: 0429575394
Category : Business & Economics
Languages : en
Pages : 830
Book Description
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
Parallel and Concurrent Programming in Haskell
Author: Simon Marlow
Publisher: "O'Reilly Media, Inc."
ISBN: 1449335926
Category : Computers
Languages : en
Pages : 322
Book Description
If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network
Publisher: "O'Reilly Media, Inc."
ISBN: 1449335926
Category : Computers
Languages : en
Pages : 322
Book Description
If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network
R For Dummies
Author: Andrie de Vries
Publisher: John Wiley & Sons
ISBN: 1119963133
Category : Computers
Languages : en
Pages : 470
Book Description
Master the programming language of choice among statisticians and data analysts worldwide Coming to grips with R can be tough, even for seasoned statisticians and data analysts. Enter R For Dummies, the quick, easy way to master all the R you'll ever need. Requiring no prior programming experience and packed with practical examples, easy, step-by-step exercises, and sample code, this extremely accessible guide is the ideal introduction to R for complete beginners. It also covers many concepts that intermediate-level programmers will find extremely useful. Master your R ABCs ? get up to speed in no time with the basics, from installing and configuring R to writing simple scripts and performing simultaneous calculations on many variables Put data in its place ? get to know your way around lists, data frames, and other R data structures while learning to interact with other programs, such as Microsoft Excel Make data dance to your tune ? learn how to reshape and manipulate data, merge data sets, split and combine data, perform calculations on vectors and arrays, and much more Visualize it ? learn to use R's powerful data visualization features to create beautiful and informative graphical presentations of your data Get statistical ? find out how to do simple statistical analysis, summarize your variables, and conduct classic statistical tests, such as t-tests Expand and customize R ? get the lowdown on how to find, install, and make the most of add-on packages created by the global R community for a wide variety of purposes Open the book and find: Help downloading, installing, and configuring R Tips for getting data in and out of R Ways to use data frames and lists to organize data How to manipulate and process data Advice on fitting regression models and ANOVA Helpful hints for working with graphics How to code in R What R mailing lists and forums can do for you
Publisher: John Wiley & Sons
ISBN: 1119963133
Category : Computers
Languages : en
Pages : 470
Book Description
Master the programming language of choice among statisticians and data analysts worldwide Coming to grips with R can be tough, even for seasoned statisticians and data analysts. Enter R For Dummies, the quick, easy way to master all the R you'll ever need. Requiring no prior programming experience and packed with practical examples, easy, step-by-step exercises, and sample code, this extremely accessible guide is the ideal introduction to R for complete beginners. It also covers many concepts that intermediate-level programmers will find extremely useful. Master your R ABCs ? get up to speed in no time with the basics, from installing and configuring R to writing simple scripts and performing simultaneous calculations on many variables Put data in its place ? get to know your way around lists, data frames, and other R data structures while learning to interact with other programs, such as Microsoft Excel Make data dance to your tune ? learn how to reshape and manipulate data, merge data sets, split and combine data, perform calculations on vectors and arrays, and much more Visualize it ? learn to use R's powerful data visualization features to create beautiful and informative graphical presentations of your data Get statistical ? find out how to do simple statistical analysis, summarize your variables, and conduct classic statistical tests, such as t-tests Expand and customize R ? get the lowdown on how to find, install, and make the most of add-on packages created by the global R community for a wide variety of purposes Open the book and find: Help downloading, installing, and configuring R Tips for getting data in and out of R Ways to use data frames and lists to organize data How to manipulate and process data Advice on fitting regression models and ANOVA Helpful hints for working with graphics How to code in R What R mailing lists and forums can do for you
R Programming By Example
Author: Omar Trejo
Publisher: Packt Publishing Ltd
ISBN: 1788291360
Category : Computers
Languages : en
Pages : 461
Book Description
This step-by-step guide demonstrates how to build simple-to-advanced applications through examples in R using modern tools. About This Book Get a firm hold on the fundamentals of R through practical hands-on examples Get started with good R programming fundamentals for data science Exploit the different libraries of R to build interesting applications in R Who This Book Is For This books is for aspiring data science professionals or statisticians who would like to learn about the R programming language in a practical manner. Basic programming knowledge is assumed. What You Will Learn Discover techniques to leverage R's features, and work with packages Perform a descriptive analysis and work with statistical models using R Work efficiently with objects without using loops Create diverse visualizations to gain better understanding of the data Understand ways to produce good visualizations and create reports for the results Read and write data from relational databases and REST APIs, both packaged and unpackaged Improve performance by writing better code, delegating that code to a more efficient programming language, or making it parallel In Detail R is a high-level statistical language and is widely used among statisticians and data miners to develop analytical applications. Often, data analysis people with great analytical skills lack solid programming knowledge and are unfamiliar with the correct ways to use R. Based on the version 3.4, this book will help you develop strong fundamentals when working with R by taking you through a series of full representative examples, giving you a holistic view of R. We begin with the basic installation and configuration of the R environment. As you progress through the exercises, you'll become thoroughly acquainted with R's features and its packages. With this book, you will learn about the basic concepts of R programming, work efficiently with graphs, create publication-ready and interactive 3D graphs, and gain a better understanding of the data at hand. The detailed step-by-step instructions will enable you to get a clean set of data, produce good visualizations, and create reports for the results. It also teaches you various methods to perform code profiling and performance enhancement with good programming practices, delegation, and parallelization. By the end of this book, you will know how to efficiently work with data, create quality visualizations and reports, and develop code that is modular, expressive, and maintainable. Style and Approach This is an easy-to-understand guide filled with real-world examples, giving you a holistic view of R and practical, hands-on experience.
Publisher: Packt Publishing Ltd
ISBN: 1788291360
Category : Computers
Languages : en
Pages : 461
Book Description
This step-by-step guide demonstrates how to build simple-to-advanced applications through examples in R using modern tools. About This Book Get a firm hold on the fundamentals of R through practical hands-on examples Get started with good R programming fundamentals for data science Exploit the different libraries of R to build interesting applications in R Who This Book Is For This books is for aspiring data science professionals or statisticians who would like to learn about the R programming language in a practical manner. Basic programming knowledge is assumed. What You Will Learn Discover techniques to leverage R's features, and work with packages Perform a descriptive analysis and work with statistical models using R Work efficiently with objects without using loops Create diverse visualizations to gain better understanding of the data Understand ways to produce good visualizations and create reports for the results Read and write data from relational databases and REST APIs, both packaged and unpackaged Improve performance by writing better code, delegating that code to a more efficient programming language, or making it parallel In Detail R is a high-level statistical language and is widely used among statisticians and data miners to develop analytical applications. Often, data analysis people with great analytical skills lack solid programming knowledge and are unfamiliar with the correct ways to use R. Based on the version 3.4, this book will help you develop strong fundamentals when working with R by taking you through a series of full representative examples, giving you a holistic view of R. We begin with the basic installation and configuration of the R environment. As you progress through the exercises, you'll become thoroughly acquainted with R's features and its packages. With this book, you will learn about the basic concepts of R programming, work efficiently with graphs, create publication-ready and interactive 3D graphs, and gain a better understanding of the data at hand. The detailed step-by-step instructions will enable you to get a clean set of data, produce good visualizations, and create reports for the results. It also teaches you various methods to perform code profiling and performance enhancement with good programming practices, delegation, and parallelization. By the end of this book, you will know how to efficiently work with data, create quality visualizations and reports, and develop code that is modular, expressive, and maintainable. Style and Approach This is an easy-to-understand guide filled with real-world examples, giving you a holistic view of R and practical, hands-on experience.
The R Book
Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 9780470515068
Category : Mathematics
Languages : en
Pages : 953
Book Description
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Publisher: John Wiley & Sons
ISBN: 9780470515068
Category : Mathematics
Languages : en
Pages : 953
Book Description
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Introduction to Data Science
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
R Projects For Dummies
Author: Joseph Schmuller
Publisher: John Wiley & Sons
ISBN: 1119446163
Category : Computers
Languages : en
Pages : 364
Book Description
Make the most of R’s extensive toolset R Projects For Dummies offers a unique learn-by-doing approach. You will increase the depth and breadth of your R skillset by completing a wide variety of projects. By using R’s graphics, interactive, and machine learning tools, you’ll learn to apply R’s extensive capabilities in an array of scenarios. The depth of the project experience is unmatched by any other content online or in print. And you just might increase your statistics knowledge along the way, too! R is a free tool, and it’s the basis of a huge amount of work in data science. It's taking the place of costly statistical software that sometimes takes a long time to learn. One reason is that you can use just a few R commands to create sophisticated analyses. Another is that easy-to-learn R graphics enable you make the results of those analyses available to a wide audience. This book will help you sharpen your skills by applying them in the context of projects with R, including dashboards, image processing, data reduction, mapping, and more. Appropriate for R users at all levels Helps R programmers plan and complete their own projects Focuses on R functions and packages Shows how to carry out complex analyses by just entering a few commands If you’re brand new to R or just want to brush up on your skills, R Projects For Dummies will help you complete your projects with ease.
Publisher: John Wiley & Sons
ISBN: 1119446163
Category : Computers
Languages : en
Pages : 364
Book Description
Make the most of R’s extensive toolset R Projects For Dummies offers a unique learn-by-doing approach. You will increase the depth and breadth of your R skillset by completing a wide variety of projects. By using R’s graphics, interactive, and machine learning tools, you’ll learn to apply R’s extensive capabilities in an array of scenarios. The depth of the project experience is unmatched by any other content online or in print. And you just might increase your statistics knowledge along the way, too! R is a free tool, and it’s the basis of a huge amount of work in data science. It's taking the place of costly statistical software that sometimes takes a long time to learn. One reason is that you can use just a few R commands to create sophisticated analyses. Another is that easy-to-learn R graphics enable you make the results of those analyses available to a wide audience. This book will help you sharpen your skills by applying them in the context of projects with R, including dashboards, image processing, data reduction, mapping, and more. Appropriate for R users at all levels Helps R programmers plan and complete their own projects Focuses on R functions and packages Shows how to carry out complex analyses by just entering a few commands If you’re brand new to R or just want to brush up on your skills, R Projects For Dummies will help you complete your projects with ease.