Author: Aloysius Lim
Publisher: Packt Publishing Ltd
ISBN: 1783989270
Category : Computers
Languages : en
Pages : 176
Book Description
This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.
R High Performance Programming
Author: Aloysius Lim
Publisher: Packt Publishing Ltd
ISBN: 1783989270
Category : Computers
Languages : en
Pages : 176
Book Description
This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.
Publisher: Packt Publishing Ltd
ISBN: 1783989270
Category : Computers
Languages : en
Pages : 176
Book Description
This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.
Advanced R
Author: Hadley Wickham
Publisher: CRC Press
ISBN: 1498759807
Category : Mathematics
Languages : en
Pages : 669
Book Description
An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.
Publisher: CRC Press
ISBN: 1498759807
Category : Mathematics
Languages : en
Pages : 669
Book Description
An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.
Hands-On High Performance with Go
Author: Bob Strecansky
Publisher: Packt Publishing Ltd
ISBN: 178980177X
Category : Computers
Languages : en
Pages : 387
Book Description
Proven methodologies and concurrency techniques that will help you write faster and better code with Go programming Key FeaturesExplore Go’s profiling tools to write faster programs by identifying and fixing bottlenecksAddress Go-specific performance issues such as memory allocation and garbage collectionDelve into the subtleties of concurrency and discover how to successfully implement it in everyday applicationsBook Description Go is an easy-to-write language that is popular among developers thanks to its features such as concurrency, portability, and ability to reduce complexity. This Golang book will teach you how to construct idiomatic Go code that is reusable and highly performant. Starting with an introduction to performance concepts, you’ll understand the ideology behind Go’s performance. You’ll then learn how to effectively implement Go data structures and algorithms along with exploring data manipulation and organization to write programs for scalable software. This book covers channels and goroutines for parallelism and concurrency to write high-performance code for distributed systems. As you advance, you’ll learn how to manage memory effectively. You’ll explore the compute unified device architecture (CUDA) application programming interface (API), use containers to build Go code, and work with the Go build cache for quicker compilation. You’ll also get to grips with profiling and tracing Go code for detecting bottlenecks in your system. Finally, you’ll evaluate clusters and job queues for performance optimization and monitor the application for performance regression. By the end of this Go programming book, you’ll be able to improve existing code and fulfill customer requirements by writing efficient programs. What you will learnOrganize and manipulate data effectively with clusters and job queuesExplore commonly applied Go data structures and algorithmsWrite anonymous functions in Go to build reusable appsProfile and trace Go apps to reduce bottlenecks and improve efficiencyDeploy, monitor, and iterate Go programs with a focus on performanceDive into memory management and CPU and GPU parallelism in GoWho this book is for This Golang book is a must for developers and professionals who have an intermediate-to-advanced understanding of Go programming, and are interested in improving their speed of code execution.
Publisher: Packt Publishing Ltd
ISBN: 178980177X
Category : Computers
Languages : en
Pages : 387
Book Description
Proven methodologies and concurrency techniques that will help you write faster and better code with Go programming Key FeaturesExplore Go’s profiling tools to write faster programs by identifying and fixing bottlenecksAddress Go-specific performance issues such as memory allocation and garbage collectionDelve into the subtleties of concurrency and discover how to successfully implement it in everyday applicationsBook Description Go is an easy-to-write language that is popular among developers thanks to its features such as concurrency, portability, and ability to reduce complexity. This Golang book will teach you how to construct idiomatic Go code that is reusable and highly performant. Starting with an introduction to performance concepts, you’ll understand the ideology behind Go’s performance. You’ll then learn how to effectively implement Go data structures and algorithms along with exploring data manipulation and organization to write programs for scalable software. This book covers channels and goroutines for parallelism and concurrency to write high-performance code for distributed systems. As you advance, you’ll learn how to manage memory effectively. You’ll explore the compute unified device architecture (CUDA) application programming interface (API), use containers to build Go code, and work with the Go build cache for quicker compilation. You’ll also get to grips with profiling and tracing Go code for detecting bottlenecks in your system. Finally, you’ll evaluate clusters and job queues for performance optimization and monitor the application for performance regression. By the end of this Go programming book, you’ll be able to improve existing code and fulfill customer requirements by writing efficient programs. What you will learnOrganize and manipulate data effectively with clusters and job queuesExplore commonly applied Go data structures and algorithmsWrite anonymous functions in Go to build reusable appsProfile and trace Go apps to reduce bottlenecks and improve efficiencyDeploy, monitor, and iterate Go programs with a focus on performanceDive into memory management and CPU and GPU parallelism in GoWho this book is for This Golang book is a must for developers and professionals who have an intermediate-to-advanced understanding of Go programming, and are interested in improving their speed of code execution.
Efficient R Programming
Author: Colin Gillespie
Publisher: "O'Reilly Media, Inc."
ISBN: 1491950757
Category : Computers
Languages : en
Pages : 220
Book Description
There are many excellent R resources for visualization, data science, and package development. Hundreds of scattered vignettes, web pages, and forums explain how to use R in particular domains. But little has been written on how to simply make R work effectively—until now. This hands-on book teaches novices and experienced R users how to write efficient R code. Drawing on years of experience teaching R courses, authors Colin Gillespie and Robin Lovelace provide practical advice on a range of topics—from optimizing the set-up of RStudio to leveraging C++—that make this book a useful addition to any R user’s bookshelf. Academics, business users, and programmers from a wide range of backgrounds stand to benefit from the guidance in Efficient R Programming. Get advice for setting up an R programming environment Explore general programming concepts and R coding techniques Understand the ingredients of an efficient R workflow Learn how to efficiently read and write data in R Dive into data carpentry—the vital skill for cleaning raw data Optimize your code with profiling, standard tricks, and other methods Determine your hardware capabilities for handling R computation Maximize the benefits of collaborative R programming Accelerate your transition from R hacker to R programmer
Publisher: "O'Reilly Media, Inc."
ISBN: 1491950757
Category : Computers
Languages : en
Pages : 220
Book Description
There are many excellent R resources for visualization, data science, and package development. Hundreds of scattered vignettes, web pages, and forums explain how to use R in particular domains. But little has been written on how to simply make R work effectively—until now. This hands-on book teaches novices and experienced R users how to write efficient R code. Drawing on years of experience teaching R courses, authors Colin Gillespie and Robin Lovelace provide practical advice on a range of topics—from optimizing the set-up of RStudio to leveraging C++—that make this book a useful addition to any R user’s bookshelf. Academics, business users, and programmers from a wide range of backgrounds stand to benefit from the guidance in Efficient R Programming. Get advice for setting up an R programming environment Explore general programming concepts and R coding techniques Understand the ingredients of an efficient R workflow Learn how to efficiently read and write data in R Dive into data carpentry—the vital skill for cleaning raw data Optimize your code with profiling, standard tricks, and other methods Determine your hardware capabilities for handling R computation Maximize the benefits of collaborative R programming Accelerate your transition from R hacker to R programmer
Software Optimization for High-performance Computing
Author: Kevin R. Wadleigh
Publisher: Prentice Hall Professional
ISBN: 9780130170088
Category : Computers
Languages : en
Pages : 414
Book Description
The hands-on guide to high-performance coding and algorithm optimization. This hands-on guide to software optimization introduces state-of-the-art solutions for every key aspect of software performance - both code-based and algorithm-based. Two leading HP software performance experts offer comparative optimization strategies for RISC and for the new Explicitly Parallel Instruction Computing (EPIC) design used in Intel IA-64 processors. Using many practical examples, they offer specific techniques for: Predicting and measuring performance - and identifying your best optimization opportunities Storage optimization: cache, system memory, virtual memory, and I/0 Parallel processing: distributed-memory and shared-memory (SMP and ccNUMA) Compilers and loop optimization Enhancing parallelism: compiler directives, threads, and message passing Mathematical libraries and algorithms Whether you're a developer, ISV, or technical researcher, if you need to optimize high-performance software on today's leading processors, one book delivers the advanced techniques and code examples you need: Software Optimization for High Performance Computing.
Publisher: Prentice Hall Professional
ISBN: 9780130170088
Category : Computers
Languages : en
Pages : 414
Book Description
The hands-on guide to high-performance coding and algorithm optimization. This hands-on guide to software optimization introduces state-of-the-art solutions for every key aspect of software performance - both code-based and algorithm-based. Two leading HP software performance experts offer comparative optimization strategies for RISC and for the new Explicitly Parallel Instruction Computing (EPIC) design used in Intel IA-64 processors. Using many practical examples, they offer specific techniques for: Predicting and measuring performance - and identifying your best optimization opportunities Storage optimization: cache, system memory, virtual memory, and I/0 Parallel processing: distributed-memory and shared-memory (SMP and ccNUMA) Compilers and loop optimization Enhancing parallelism: compiler directives, threads, and message passing Mathematical libraries and algorithms Whether you're a developer, ISV, or technical researcher, if you need to optimize high-performance software on today's leading processors, one book delivers the advanced techniques and code examples you need: Software Optimization for High Performance Computing.
High Performance Python
Author: Micha Gorelick
Publisher: O'Reilly Media
ISBN: 1492054992
Category : Computers
Languages : en
Pages : 469
Book Description
Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python’s implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker
Publisher: O'Reilly Media
ISBN: 1492054992
Category : Computers
Languages : en
Pages : 469
Book Description
Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python’s implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker
Mastering Parallel Programming with R
Author: Simon R. Chapple
Publisher: Packt Publishing Ltd
ISBN: 1784394629
Category : Computers
Languages : en
Pages : 244
Book Description
Master the robust features of R parallel programming to accelerate your data science computations About This Book Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest Become an expert in writing the most efficient and highest performance parallel algorithms in R Get to grips with the concept of parallelism to accelerate your existing R programs Who This Book Is For This book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks. What You Will Learn Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS) Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages Build and extend a parallel R package (SPRINT) with your own MPI-based routines Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them Build a task farm master-worker, spatial grid, and hybrid parallel R programs In Detail R is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources. Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems. Style and approach This book leads you chapter by chapter from the easy to more complex forms of parallelism. The author's insights are presented through clear practical examples applied to a range of different problems, with comprehensive reference information for each of the R packages employed. The book can be read from start to finish, or by dipping in chapter by chapter, as each chapter describes a specific parallel approach and technology, so can be read as a standalone.
Publisher: Packt Publishing Ltd
ISBN: 1784394629
Category : Computers
Languages : en
Pages : 244
Book Description
Master the robust features of R parallel programming to accelerate your data science computations About This Book Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest Become an expert in writing the most efficient and highest performance parallel algorithms in R Get to grips with the concept of parallelism to accelerate your existing R programs Who This Book Is For This book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks. What You Will Learn Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS) Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages Build and extend a parallel R package (SPRINT) with your own MPI-based routines Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them Build a task farm master-worker, spatial grid, and hybrid parallel R programs In Detail R is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources. Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems. Style and approach This book leads you chapter by chapter from the easy to more complex forms of parallelism. The author's insights are presented through clear practical examples applied to a range of different problems, with comprehensive reference information for each of the R packages employed. The book can be read from start to finish, or by dipping in chapter by chapter, as each chapter describes a specific parallel approach and technology, so can be read as a standalone.
Systems Performance
Author: Brendan Gregg
Publisher: Pearson
ISBN: 0136821650
Category : Computers
Languages : en
Pages : 2022
Book Description
Systems Performance, Second Edition, covers concepts, strategy, tools, and tuning for operating systems and applications, using Linux-based operating systems as the primary example. A deep understanding of these tools and techniques is critical for developers today. Implementing the strategies described in this thoroughly revised and updated edition can lead to a better end-user experience and lower costs, especially for cloud computing environments that charge by the OS instance. Systems performance expert and best-selling author Brendan Gregg summarizes relevant operating system, hardware, and application theory to quickly get professionals up to speed even if they have never analyzed performance before. Gregg then provides in-depth explanations of the latest tools and techniques, including extended BPF, and shows how to get the most out of cloud, web, and large-scale enterprise systems. Key topics covered include Hardware, kernel, and application internals, and how they perform Methodologies for rapid performance analysis of complex systems Optimizing CPU, memory, file system, disk, and networking usage Sophisticated profiling and tracing with perf, Ftrace, and BPF (BCC and bpftrace) Performance challenges associated with cloud computing hypervisors Benchmarking more effectively Featuring up-to-date coverage of Linux operating systems and environments, Systems Performance, Second Edition, also addresses issues that apply to any computer system. The book will be a go-to reference for many years to come and, like the first edition, required reading at leading tech companies. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Publisher: Pearson
ISBN: 0136821650
Category : Computers
Languages : en
Pages : 2022
Book Description
Systems Performance, Second Edition, covers concepts, strategy, tools, and tuning for operating systems and applications, using Linux-based operating systems as the primary example. A deep understanding of these tools and techniques is critical for developers today. Implementing the strategies described in this thoroughly revised and updated edition can lead to a better end-user experience and lower costs, especially for cloud computing environments that charge by the OS instance. Systems performance expert and best-selling author Brendan Gregg summarizes relevant operating system, hardware, and application theory to quickly get professionals up to speed even if they have never analyzed performance before. Gregg then provides in-depth explanations of the latest tools and techniques, including extended BPF, and shows how to get the most out of cloud, web, and large-scale enterprise systems. Key topics covered include Hardware, kernel, and application internals, and how they perform Methodologies for rapid performance analysis of complex systems Optimizing CPU, memory, file system, disk, and networking usage Sophisticated profiling and tracing with perf, Ftrace, and BPF (BCC and bpftrace) Performance challenges associated with cloud computing hypervisors Benchmarking more effectively Featuring up-to-date coverage of Linux operating systems and environments, Systems Performance, Second Edition, also addresses issues that apply to any computer system. The book will be a go-to reference for many years to come and, like the first edition, required reading at leading tech companies. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
An Introduction to High-performance Scientific Computing
Author: Lloyd Dudley Fosdick
Publisher: MIT Press
ISBN: 9780262061810
Category : Computers
Languages : en
Pages : 838
Book Description
Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series
Publisher: MIT Press
ISBN: 9780262061810
Category : Computers
Languages : en
Pages : 838
Book Description
Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series
Learning R Programming
Author: Kun Ren
Publisher: Packt Publishing Ltd
ISBN: 1785880624
Category : Computers
Languages : en
Pages : 576
Book Description
Become an efficient data scientist with R About This Book Explore the R language from basic types and data structures to advanced topics Learn how to tackle programming problems and explore both functional and object-oriented programming techniques Learn how to address the core problems of programming in R and leverage the most popular packages for common tasks Who This Book Is For This is the perfect tutorial for anyone who is new to statistical programming and modeling. Anyone with basic programming and data processing skills can pick this book up to systematically learn the R programming language and crucial techniques. What You Will Learn Explore the basic functions in R and familiarize yourself with common data structures Work with data in R using basic functions of statistics, data mining, data visualization, root solving, and optimization Get acquainted with R's evaluation model with environments and meta-programming techniques with symbol, call, formula, and expression Get to grips with object-oriented programming in R: including the S3, S4, RC, and R6 systems Access relational databases such as SQLite and non-relational databases such as MongoDB and Redis Get to know high performance computing techniques such as parallel computing and Rcpp Use web scraping techniques to extract information Create RMarkdown, an interactive app with Shiny, DiagramR, interactive charts, ggvis, and more In Detail R is a high-level functional language and one of the must-know tools for data science and statistics. Powerful but complex, R can be challenging for beginners and those unfamiliar with its unique behaviors. Learning R Programming is the solution - an easy and practical way to learn R and develop a broad and consistent understanding of the language. Through hands-on examples you'll discover powerful R tools, and R best practices that will give you a deeper understanding of working with data. You'll get to grips with R's data structures and data processing techniques, as well as the most popular R packages to boost your productivity from the offset. Start with the basics of R, then dive deep into the programming techniques and paradigms to make your R code excel. Advance quickly to a deeper understanding of R's behavior as you learn common tasks including data analysis, databases, web scraping, high performance computing, and writing documents. By the end of the book, you'll be a confident R programmer adept at solving problems with the right techniques. Style and approach Developed to make learning easy and intuitive, this book comes packed with a wide variety of statistical and graphical techniques and a wealth of practical information for anyone looking to get started with this exciting and powerful language.
Publisher: Packt Publishing Ltd
ISBN: 1785880624
Category : Computers
Languages : en
Pages : 576
Book Description
Become an efficient data scientist with R About This Book Explore the R language from basic types and data structures to advanced topics Learn how to tackle programming problems and explore both functional and object-oriented programming techniques Learn how to address the core problems of programming in R and leverage the most popular packages for common tasks Who This Book Is For This is the perfect tutorial for anyone who is new to statistical programming and modeling. Anyone with basic programming and data processing skills can pick this book up to systematically learn the R programming language and crucial techniques. What You Will Learn Explore the basic functions in R and familiarize yourself with common data structures Work with data in R using basic functions of statistics, data mining, data visualization, root solving, and optimization Get acquainted with R's evaluation model with environments and meta-programming techniques with symbol, call, formula, and expression Get to grips with object-oriented programming in R: including the S3, S4, RC, and R6 systems Access relational databases such as SQLite and non-relational databases such as MongoDB and Redis Get to know high performance computing techniques such as parallel computing and Rcpp Use web scraping techniques to extract information Create RMarkdown, an interactive app with Shiny, DiagramR, interactive charts, ggvis, and more In Detail R is a high-level functional language and one of the must-know tools for data science and statistics. Powerful but complex, R can be challenging for beginners and those unfamiliar with its unique behaviors. Learning R Programming is the solution - an easy and practical way to learn R and develop a broad and consistent understanding of the language. Through hands-on examples you'll discover powerful R tools, and R best practices that will give you a deeper understanding of working with data. You'll get to grips with R's data structures and data processing techniques, as well as the most popular R packages to boost your productivity from the offset. Start with the basics of R, then dive deep into the programming techniques and paradigms to make your R code excel. Advance quickly to a deeper understanding of R's behavior as you learn common tasks including data analysis, databases, web scraping, high performance computing, and writing documents. By the end of the book, you'll be a confident R programmer adept at solving problems with the right techniques. Style and approach Developed to make learning easy and intuitive, this book comes packed with a wide variety of statistical and graphical techniques and a wealth of practical information for anyone looking to get started with this exciting and powerful language.