QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION. PDF full book. Access full book title QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION. by L. ZENG. Download full books in PDF and EPUB format.

QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION.

QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION. PDF Author: L. ZENG
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for> 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION.

QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION. PDF Author: L. ZENG
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for> 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION.

QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D[sub[alpha]] time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with[beta][sub N]*H[sub 89L] product reaching 7 for> 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

New Amplifications of the North American Piperaceae

New Amplifications of the North American Piperaceae PDF Author: William Trelease
Publisher:
ISBN:
Category : Piperaceae
Languages : en
Pages : 8

Book Description


Systems Approaches to Nuclear Fusion Reactors

Systems Approaches to Nuclear Fusion Reactors PDF Author: Frederick B. Marcus
Publisher: Springer Nature
ISBN: 3031177118
Category : Science
Languages : en
Pages : 484

Book Description
This book offers an overall review, applying systems engineering and architecture approaches, of the design, optimization, operation and results of leading fusion experiments. These approaches provide a unified means of evaluating reactor design. Methodologies are developed for more coherent construction or evaluation of fusion devices, associated experiments and operating procedures. The main focus is on tokamaks, with almost all machines and their important results being integrated into a systems design space. Case studies focus on DIII-D, TCV, JET, WEST, the fusion reactor prototype ITER and the EU DEMO concept. Stellarator, Mirror and Laser inertial confinement experiments are similarly analysed, including reactor implications of breakeven at NIF. The book examines the engineering and physics design and optimization process for each machine, analysing their performance and major results achieved, thus establishing a basis for the improvement of future machines. The reader will gain a broad historical and up-to-date perspective of the status of nuclear fusion research from both an engineering and physics point of view. Explanations are given of the computational tools needed to design and operate successful experiments and reactor-relevant machines. This book is aimed at both graduate students and practitioners of nuclear fusion science and engineering, as well as those specializing in other fields demanding large and integrated experimental equipment. Systems engineers will obtain valuable insights into fusion applications. References are given to associated complex mathematical derivations, which are beyond the scope of this book. The general reader interested in nuclear fusion will find here an accessible summary of the current state of nuclear fusion.

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309487463
Category : Science
Languages : en
Pages : 341

Book Description
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.

Interim Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research

Interim Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309469333
Category : Science
Languages : en
Pages : 61

Book Description
In January 2003, President George W. Bush announced that the United States would begin negotiations to join the ITER project and noted that "if successful, ITER would create the first fusion device capable of producing thermal energy comparable to the output of a power plant, making commercially viable fusion power available as soon as 2050." The United States and the other ITER members are now constructing ITER with the aim to demonstrate that magnetically confined plasmas can produce more fusion power than the power needed to sustain the plasma. This is a critical step towards producing and delivering electricity from fusion energy. Since the international establishment of the ITER project, ITER's construction schedule has slipped and ITER's costs have increased significantly, leading to questions about whether the United States should continue its commitment to participate in ITER. This study will advise how to best advance the fusion energy sciences in the United States given developments in the field, the specific international investments in fusion science and technology, and the priorities for the next ten years developed by the community and the Office of Fusion Energy Sciences (FES) that were recently reported to Congress. It will address the scientific justification and needs for strengthening the foundations for realizing fusion energy given a potential choice of U.S. participation or not in the ITER project, and develops future scenarios in either case. This interim report assesses the current status of U.S. fusion research and of the importance of burning plasma research to the development of fusion energy as well as to plasma science and other science and engineering disciplines. The final report will present strategies that incorporate continued progress toward a burning plasma experiment and a focus on innovation.

New Ideas in Tokamak Confinement

New Ideas in Tokamak Confinement PDF Author: Marshall N. Rosenbluth
Publisher: Springer Science & Business Media
ISBN: 9781563961311
Category : Science
Languages : en
Pages : 514

Book Description
Market: Scientists and students involved in thermonuclear fusion research. Thermonuclear fusion research using the confinement device tokamak represents one of the most prominent science projects in the second half of the 20th century. International Tokamak Community is now committing significant effort and funds to experiments with burning plasma, hot and dense enough to produce significant nuclear fusion reactions. The methods used to enhance tokamak performance have a profound and immediate effect on machine design. This book provides an up-to-date account of research in tokamak fusion and puts forward innovative ideas in confinement physics.

Exploration of the Super H-mode Regime on DIII-D and Potential Advantages for Burning Plasma Devices

Exploration of the Super H-mode Regime on DIII-D and Potential Advantages for Burning Plasma Devices PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In a new high pedestal regime ("Super H-mode") we predicted and accessed DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. And while elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER can benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. In similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.

Fernere Bekräftigung der nöthigen Beilage und gründliche Erinnerungen zu dem ersten Abschnitt des 5. Bandes der teutschen Staatskanzlei des Herrn Dr. Reuss, vom Jahrgang 1799, den Rechtsstreit zwischen dem Gräflich-Limburgischen Allodialerben und den von ... betreffend

Fernere Bekräftigung der nöthigen Beilage und gründliche Erinnerungen zu dem ersten Abschnitt des 5. Bandes der teutschen Staatskanzlei des Herrn Dr. Reuss, vom Jahrgang 1799, den Rechtsstreit zwischen dem Gräflich-Limburgischen Allodialerben und den von ... betreffend PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


DIII-D Experiments and Modeling of Core Confinement in Quiescent Double Barrier Plasmas

DIII-D Experiments and Modeling of Core Confinement in Quiescent Double Barrier Plasmas PDF Author: T. H. Osborne
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We continue to explore Quiescent Double Barrier (QDB) operation on DIII-D to address issues of critical importance to internal transport barrier (ITB) plasmas. QDB plasmas exhibit both a core transport barrier and a quiescent, H-mode edge barrier. Both experiments and modeling of these plasmas are leading to an increased understanding of this regime and it's potential advantages for advanced-tokamak (AT) burning-plasma operation. These near steady plasma conditions have been maintained on DIII-D for up to 4s, times greater than 35{tau}{sub E}, and exhibit high performance with {beta}{sub N}> 2.5 and neutron production rates S{sub n} {approx} 1 x 10{sup 16}s{sup -1}. Recent experiments have been directed at exploring both the current profile modification effects of electron cyclotron current drive (ECCD) and electron cyclotron (ECH) heating-induced changes in temperature, density and impurity profiles. We use model-based analysis to determine the effects of both heating and current drive on the q-profile in these QDB plasmas. Experiments based on predictive modeling achieved a significant modification to the q-profile evolution [1] resulting from the non-inductive current drive effects due to direct ECCD and changes in the bootstrap and neutral beam current drive components. We observe that the injection of EC power inside the barrier region changes the density peaking from n{sub e}/n{sub e} = 2.1 to 1.5 accompanied by a significant reduction in the core carbon and high-Z impurities, nickel and copper.