Quasilinear Hyperbolic Systems And Dissipative Mechanisms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quasilinear Hyperbolic Systems And Dissipative Mechanisms PDF full book. Access full book title Quasilinear Hyperbolic Systems And Dissipative Mechanisms by Ling Hsiao. Download full books in PDF and EPUB format.

Quasilinear Hyperbolic Systems And Dissipative Mechanisms

Quasilinear Hyperbolic Systems And Dissipative Mechanisms PDF Author: Ling Hsiao
Publisher: World Scientific
ISBN: 9814497185
Category : Mathematics
Languages : en
Pages : 233

Book Description
This book introduces the recent developments in the subject of quasilinear hyperbolic systems with dissipation, such as frictional damping, relaxation, viscosity and heat diffusion. The mathematical theory behind this subject is emphasized in two ways. One emphasis is based on understanding the influence of the dissipation mechanism on the qualitative behavior of solutions, such as the nonlinear diffusive phenomena caused by damping, and other phenomena (including phase transition) for the case with viscosity and heat diffusion. The second emphasis is to take the systems with the dissipation mechanism as an approach to approximating the corresponding system of quasilinear hyperbolic conservation laws - the zero-limit relaxation, or the zero-limit viscosity, and the related topic of nonlinear stability of waves.

Quasilinear Hyperbolic Systems And Dissipative Mechanisms

Quasilinear Hyperbolic Systems And Dissipative Mechanisms PDF Author: Ling Hsiao
Publisher: World Scientific
ISBN: 9814497185
Category : Mathematics
Languages : en
Pages : 233

Book Description
This book introduces the recent developments in the subject of quasilinear hyperbolic systems with dissipation, such as frictional damping, relaxation, viscosity and heat diffusion. The mathematical theory behind this subject is emphasized in two ways. One emphasis is based on understanding the influence of the dissipation mechanism on the qualitative behavior of solutions, such as the nonlinear diffusive phenomena caused by damping, and other phenomena (including phase transition) for the case with viscosity and heat diffusion. The second emphasis is to take the systems with the dissipation mechanism as an approach to approximating the corresponding system of quasilinear hyperbolic conservation laws - the zero-limit relaxation, or the zero-limit viscosity, and the related topic of nonlinear stability of waves.

Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations PDF Author: C.M. Dafermos
Publisher: Elsevier
ISBN: 0080461387
Category : Mathematics
Languages : en
Pages : 677

Book Description
The aim of this Handbook is to acquaint the reader with the current status of the theory of evolutionary partial differential equations, and with some of its applications. Evolutionary partial differential equations made their first appearance in the 18th century, in the endeavor to understand the motion of fluids and other continuous media. The active research effort over the span of two centuries, combined with the wide variety of physical phenomena that had to be explained, has resulted in an enormous body of literature. Any attempt to produce a comprehensive survey would be futile. The aim here is to collect review articles, written by leading experts, which will highlight the present and expected future directions of development of the field. The emphasis will be on nonlinear equations, which pose the most challenging problems today.. Volume I of this Handbook does focus on the abstract theory of evolutionary equations. . Volume 2 considers more concrete problems relating to specific applications. . Together they provide a panorama of this amazingly complex and rapidly developing branch of mathematics.

Hyperbolic Systems of Conservation Laws

Hyperbolic Systems of Conservation Laws PDF Author: Alberto Bressan
Publisher: Oxford University Press, USA
ISBN: 9780198507000
Category : Mathematics
Languages : en
Pages : 270

Book Description
This book provides a self-contained introduction to the mathematical theory of hyperbolic systems of conservation laws, with particular emphasis on the study of discontinuous solutions, characterized by the appearance of shock waves. This area has experienced substantial progress in very recent years thanks to the introduction of new techniques, in particular the front tracking algorithm and the semigroup approach. These techniques provide a solution to the long standing open problems of uniqueness and stability of entropy weak solutions. This volume is the first to present a comprehensive account of these new, fundamental advances. It also includes a detailed analysis of the stability and convergence of the front tracking algorithm. A set of problems, with varying difficulty is given at the end of each chapter to verify and expand understanding of the concepts and techniques previously discussed. For researchers, this book will provide an indispensable reference to the state of the art in the field of hyperbolic systems of conservation laws.

Handbook of Mathematical Fluid Dynamics

Handbook of Mathematical Fluid Dynamics PDF Author: S. Friedlander
Publisher: Elsevier
ISBN: 0080532926
Category : Science
Languages : en
Pages : 829

Book Description
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.

Analysis and Numerics for Conservation Laws

Analysis and Numerics for Conservation Laws PDF Author: Gerald Warnecke
Publisher: Springer Science & Business Media
ISBN: 3540279075
Category : Mathematics
Languages : en
Pages : 541

Book Description
Whatdoasupernovaexplosioninouterspace,?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics.

连续介质物理中的双曲守恒律(天元基金影印系列丛书)

连续介质物理中的双曲守恒律(天元基金影印系列丛书) PDF Author: C. M. Dafermos
Publisher: 清华大学出版社有限公司
ISBN: 9787302102038
Category : Conservation laws (Physics)
Languages : en
Pages : 466

Book Description


Introduction to the Mathematical Theory of Compressible Flow

Introduction to the Mathematical Theory of Compressible Flow PDF Author: Antonín Novotny
Publisher: OUP Oxford
ISBN: 019152395X
Category : Mathematics
Languages : en
Pages : 528

Book Description
This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to focus on various modules of the material, either in part or more fully. Chapters include detailed heuristic arguments providing motivation for technical aspects that are rigorously presented later on in the text; for instance, the existence theory for steady and unsteady Navier-Stokes equations of isentropic compressible flow, and two-by-two systems of Euler equations in one space dimension. These parts are presented in a textbook style with auxiliary material in supporting sections and appendices. The book includes a rich index and extensive bibliography, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of compressible flow, as well as in the book itself.

Quasilinear Hyperbolic Systems, Compressible Flows, and Waves

Quasilinear Hyperbolic Systems, Compressible Flows, and Waves PDF Author: Vishnu D. Sharma
Publisher: CRC Press
ISBN: 1439836914
Category : Mathematics
Languages : en
Pages : 284

Book Description
Filled with practical examples, Quasilinear Hyperbolic Systems, Compressible Flows, and Waves presents a self-contained discussion of quasilinear hyperbolic equations and systems with applications. It emphasizes nonlinear theory and introduces some of the most active research in the field.After linking continuum mechanics and quasilinear partial di

Analytical Approaches to Multidimensional Balance Laws

Analytical Approaches to Multidimensional Balance Laws PDF Author: Olga S. Rozanova
Publisher: Nova Publishers
ISBN: 9781594543074
Category : Science
Languages : en
Pages : 260

Book Description
It is difficult to overestimate the importance of mathematical investigation of balance laws. They arise in many areas of physics, mechanics, chemistry, biology, social sciences. In this collective book we concentrate in particular on the equations of continuous medium and related to them. As a rule, they are very complicated in their primitive form. An important feature of such equations is a possible formation of singularities even in initially smooth solution within a finite time. The structure of the singularities can be very complex. A natural step in the approach to this problem is the transition, despite the three-dimensionality of our world, to spatially one-dimensional model. Significant progress has been achieved in this direction. Unfortunately, the methods of the one-dimensional theory, as usual, cannot be adapted to a case of many spatial variables. However, there are many attempts to deal with multidimensional problems. We would like to present some of them. All of the papers are written by outstanding experts, representing various schools in mathematics and mechanics. Each paper is organised as follows: it contains an elementary (as far as it is possible) introduction to a problem, a brief review of previously published results, and then original results of the authors are presented.

Nonlinear Problems of Elasticity

Nonlinear Problems of Elasticity PDF Author: Stuart Antman
Publisher: Springer Science & Business Media
ISBN: 1475741472
Category : Mathematics
Languages : en
Pages : 762

Book Description
The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.