Quasilinear Elliptic Equations with Degenerations and Singularities PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quasilinear Elliptic Equations with Degenerations and Singularities PDF full book. Access full book title Quasilinear Elliptic Equations with Degenerations and Singularities by Pavel Drábek. Download full books in PDF and EPUB format.

Quasilinear Elliptic Equations with Degenerations and Singularities

Quasilinear Elliptic Equations with Degenerations and Singularities PDF Author: Pavel Drábek
Publisher: Walter de Gruyter
ISBN: 3110804778
Category : Mathematics
Languages : en
Pages : 233

Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.

Quasilinear Elliptic Equations with Degenerations and Singularities

Quasilinear Elliptic Equations with Degenerations and Singularities PDF Author: Pavel Drábek
Publisher: Walter de Gruyter
ISBN: 3110804778
Category : Mathematics
Languages : en
Pages : 233

Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.

Function Spaces, Differential Operators and Nonlinear Analysis

Function Spaces, Differential Operators and Nonlinear Analysis PDF Author: Dorothee Haroske
Publisher: Springer Science & Business Media
ISBN: 9783764369354
Category : Mathematics
Languages : en
Pages : 494

Book Description
This volume is dedicated to our teacher and friend Hans Triebel. The core of the book is based on lectures given at the International Conference "Function Spaces, Differential Operators and Nonlinear Analysis" (FSDONA--01) held in Teistungen, Thuringia / Germany, from June 28 to July 4,2001, in honour of his 65th birthday. This was the fifth in a series of meetings organised under the same name by scientists from Finland (Helsinki, Oulu) , the Czech Republic (Prague, Plzen) and Germany (Jena) promoting the collaboration of specialists in East and West, working in these fields. This conference was a very special event because it celebrated Hans Triebel's extraordinary impact on mathematical analysis. The development of the mod ern theory of function spaces in the last 30 years and its application to various branches in both pure and applied mathematics is deeply influenced by his lasting contributions. In a series of books Hans Triebel has given systematic treatments of the theory of function spaces from different points of view, thus revealing its interdependence with interpolation theory, harmonic analysis, partial differential equations, nonlinear operators, entropy, spectral theory and, most recently, anal ysis on fractals. The presented collection of papers is a tribute to Hans Triebel's distinguished work. The book is subdivided into three parts: • Part I contains the two invited lectures by O.V. Besov (Moscow) and D.E. Edmunds (Sussex) having a survey character and honouring Hans Triebel's contributions.

Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints

Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints PDF Author: Sergiu Aizicovici
Publisher: American Mathematical Soc.
ISBN: 0821841920
Category : Mathematics
Languages : en
Pages : 84

Book Description
In this paper the authors examine the degree map of multivalued perturbations of nonlinear operators of monotone type and prove that at a local minimizer of the corresponding Euler functional, this degree equals one.

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics PDF Author: Elina Shishkina
Publisher: Academic Press
ISBN: 0128204079
Category : Mathematics
Languages : en
Pages : 594

Book Description
Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights. - Presents the universal transmutation method as the most powerful for solving many problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods - Combines mathematical rigor with an illuminating exposition full of historical notes and fascinating details - Enables researchers, lecturers and students to find material under the single "roof"

Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains

Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains PDF Author: Michail Borsuk
Publisher: Elsevier
ISBN: 0080461735
Category : Mathematics
Languages : en
Pages : 538

Book Description
The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.Key features:* New the Hardy – Friedrichs – Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m – Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.

Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms

Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms PDF Author: John Neuberger
Publisher: American Mathematical Soc.
ISBN: 0821833391
Category : Mathematics
Languages : en
Pages : 298

Book Description
This volume contains the proceedings of the conference on Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms. It presents current research in variational methods as applied to nonlinear elliptic PDE, although several articles concern nonlinear PDE that are nonvariational and/or nonelliptic. The book contains both survey and research papers discussing important open questions and offering suggestions on analytical and numerical techniques for solving those open problems. It is suitable for graduate students and research mathematicians interested in elliptic partial differential equations.

Contributions to Partial Differential Equations and Applications

Contributions to Partial Differential Equations and Applications PDF Author: B. N. Chetverushkin
Publisher: Springer
ISBN: 3319783254
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
This book treats Modelling of CFD problems, Numerical tools for PDE, and Scientific Computing and Systems of ODE for Epidemiology, topics that are closely related to the scientific activities and interests of Prof. William Fitzgibbon, Prof. Yuri Kuznetsov, and Prof. O. Pironneau, whose outstanding achievements are recognised in this volume. It contains 20 contributions from leading scientists in applied mathematics dealing with partial differential equations and their applications to engineering, ab-initio chemistry and life sciences. It includes the mathematical and numerical contributions to PDE for applications presented at the ECCOMAS thematic conference "Contributions to PDE for Applications" held at Laboratoire Jacques Louis Lions in Paris, France, August 31- September 1, 2015, and at the Department of Mathematics, University of Houston, Texas, USA, February 26-27, 2016. This event brought together specialists from universities and research institutions who are developing or applying numerical PDE or ODE methods with an emphasis on industrial and societal applications. This volume is of interest to researchers and practitioners as well as advanced students or engineers in applied and computational mathematics. All contributions are written at an advanced scientific level with no effort made by the editors to make this volume self-contained. It is assumed that the reader is a specialist already who knows the basis of this field of research and has the capability of understanding and appreciating the latest developments in this field.

Monotone Flows and Rapid Convergence for Nonlinear Partial Differential Equations

Monotone Flows and Rapid Convergence for Nonlinear Partial Differential Equations PDF Author: V. Lakshmikantham
Publisher: CRC Press
ISBN: 1482288273
Category : Mathematics
Languages : en
Pages : 329

Book Description
A monotone iterative technique is used to obtain monotone approximate solutions that converge to the solution of nonlinear problems of partial differential equations of elliptic, parabolic and hyperbolic type. This volume describes that technique, which has played a valuable role in unifying a variety of nonlinear problems, particularly when combin

Multi-Valued Variational Inequalities and Inclusions

Multi-Valued Variational Inequalities and Inclusions PDF Author: Siegfried Carl
Publisher: Springer Nature
ISBN: 3030651657
Category : Mathematics
Languages : en
Pages : 596

Book Description
This book focuses on a large class of multi-valued variational differential inequalities and inclusions of stationary and evolutionary types with constraints reflected by subdifferentials of convex functionals. Its main goal is to provide a systematic, unified, and relatively self-contained exposition of existence, comparison and enclosure principles, together with other qualitative properties of multi-valued variational inequalities and inclusions. The problems under consideration are studied in different function spaces such as Sobolev spaces, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents, and Beppo-Levi spaces. A general and comprehensive sub-supersolution method (lattice method) is developed for both stationary and evolutionary multi-valued variational inequalities, which preserves the characteristic features of the commonly known sub-supersolution method for single-valued, quasilinear elliptic and parabolic problems. This method provides a powerful tool for studying existence and enclosure properties of solutions when the coercivity of the problems under consideration fails. It can also be used to investigate qualitative properties such as the multiplicity and location of solutions or the existence of extremal solutions. This is the first in-depth treatise on the sub-supersolution (lattice) method for multi-valued variational inequalities without any variational structures, together with related topics. The choice of the included materials and their organization in the book also makes it useful and accessible to a large audience consisting of graduate students and researchers in various areas of Mathematical Analysis and Theoretical Physics.

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday PDF Author: Fritz Gesztesy
Publisher: American Mathematical Soc.
ISBN: 082184248X
Category : Mathematics
Languages : en
Pages : 528

Book Description
This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.