Estimation in Conditionally Heteroscedastic Time Series Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Estimation in Conditionally Heteroscedastic Time Series Models PDF full book. Access full book title Estimation in Conditionally Heteroscedastic Time Series Models by Daniel Straumann. Download full books in PDF and EPUB format.

Estimation in Conditionally Heteroscedastic Time Series Models

Estimation in Conditionally Heteroscedastic Time Series Models PDF Author: Daniel Straumann
Publisher: Springer Science & Business Media
ISBN: 3540269789
Category : Business & Economics
Languages : en
Pages : 239

Book Description
In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.

Estimation in Conditionally Heteroscedastic Time Series Models

Estimation in Conditionally Heteroscedastic Time Series Models PDF Author: Daniel Straumann
Publisher: Springer Science & Business Media
ISBN: 3540269789
Category : Business & Economics
Languages : en
Pages : 239

Book Description
In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.

Time Series Models

Time Series Models PDF Author: D.R. Cox
Publisher: CRC Press
ISBN: 1000152944
Category : Mathematics
Languages : en
Pages : 243

Book Description
The analysis prediction and interpolation of economic and other time series has a long history and many applications. Major new developments are taking place, driven partly by the need to analyze financial data. The five papers in this book describe those new developments from various viewpoints and are intended to be an introduction accessible to readers from a range of backgrounds. The book arises out of the second Seminaire European de Statistique (SEMSTAT) held in Oxford in December 1994. This brought together young statisticians from across Europe, and a series of introductory lectures were given on topics at the forefront of current research activity. The lectures form the basis for the five papers contained in the book. The papers by Shephard and Johansen deal respectively with time series models for volatility, i.e. variance heterogeneity, and with cointegration. Clements and Hendry analyze the nature of prediction errors. A complementary review paper by Laird gives a biometrical view of the analysis of short time series. Finally Astrup and Nielsen give a mathematical introduction to the study of option pricing. Whilst the book draws its primary motivation from financial series and from multivariate econometric modelling, the applications are potentially much broader.

Quantitative Risk Management

Quantitative Risk Management PDF Author: Alexander J. McNeil
Publisher: Princeton University Press
ISBN: 1400866286
Category : Business & Economics
Languages : en
Pages : 721

Book Description
This book provides the most comprehensive treatment of the theoretical concepts and modelling techniques of quantitative risk management. Whether you are a financial risk analyst, actuary, regulator or student of quantitative finance, Quantitative Risk Management gives you the practical tools you need to solve real-world problems. Describing the latest advances in the field, Quantitative Risk Management covers the methods for market, credit and operational risk modelling. It places standard industry approaches on a more formal footing and explores key concepts such as loss distributions, risk measures and risk aggregation and allocation principles. The book's methodology draws on diverse quantitative disciplines, from mathematical finance and statistics to econometrics and actuarial mathematics. A primary theme throughout is the need to satisfactorily address extreme outcomes and the dependence of key risk drivers. Proven in the classroom, the book also covers advanced topics like credit derivatives. Fully revised and expanded to reflect developments in the field since the financial crisis Features shorter chapters to facilitate teaching and learning Provides enhanced coverage of Solvency II and insurance risk management and extended treatment of credit risk, including counterparty credit risk and CDO pricing Includes a new chapter on market risk and new material on risk measures and risk aggregation

Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models PDF Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634

Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Risk Measurement

Risk Measurement PDF Author: Dominique Guégan
Publisher: Springer
ISBN: 3030026809
Category : Business & Economics
Languages : en
Pages : 225

Book Description
This book combines theory and practice to analyze risk measurement from different points of view. The limitations of a model depend on the framework on which it has been built as well as specific assumptions, and risk managers need to be aware of these when assessing risks. The authors investigate the impact of these limitations, propose an alternative way of thinking that challenges traditional assumptions, and also provide novel solutions. Starting with the traditional Value at Risk (VaR) model and its limitations, the book discusses concepts like the expected shortfall, the spectral measure, the use of the spectrum, and the distortion risk measures from both a univariate and a multivariate perspective.

Stochastic Models, Statistics and Their Applications

Stochastic Models, Statistics and Their Applications PDF Author: Ansgar Steland
Publisher: Springer
ISBN: 3319138812
Category : Mathematics
Languages : en
Pages : 479

Book Description
This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications PDF Author: Tata Subba Rao
Publisher: Elsevier
ISBN: 0444538585
Category : Mathematics
Languages : en
Pages : 778

Book Description
'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications PDF Author:
Publisher: Elsevier
ISBN: 0444538631
Category : Mathematics
Languages : en
Pages : 777

Book Description
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas

Non-Linear Time Series Models in Empirical Finance

Non-Linear Time Series Models in Empirical Finance PDF Author: Philip Hans Franses
Publisher: Cambridge University Press
ISBN: 0521770416
Category : Business & Economics
Languages : en
Pages : 299

Book Description
This 2000 volume reviews non-linear time series models, and their applications to financial markets.

GARCH Models

GARCH Models PDF Author: Christian Francq
Publisher: John Wiley & Sons
ISBN: 1119313481
Category : Mathematics
Languages : en
Pages : 723

Book Description
Provides a comprehensive and updated study of GARCH models and their applications in finance, covering new developments in the discipline This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results concerning the theory and practical aspects of GARCH. The probability structure of standard GARCH models is studied in detail as well as statistical inference such as identification, estimation, and tests. The book also provides new coverage of several extensions such as multivariate models, looks at financial applications, and explores the very validation of the models used. GARCH Models: Structure, Statistical Inference and Financial Applications, 2nd Edition features a new chapter on Parameter-Driven Volatility Models, which covers Stochastic Volatility Models and Markov Switching Volatility Models. A second new chapter titled Alternative Models for the Conditional Variance contains a section on Stochastic Recurrence Equations and additional material on EGARCH, Log-GARCH, GAS, MIDAS, and intraday volatility models, among others. The book is also updated with a more complete discussion of multivariate GARCH; a new section on Cholesky GARCH; a larger emphasis on the inference of multivariate GARCH models; a new set of corrected problems available online; and an up-to-date list of references. Features up-to-date coverage of the current research in the probability, statistics, and econometric theory of GARCH models Covers significant developments in the field, especially in multivariate models Contains completely renewed chapters with new topics and results Handles both theoretical and applied aspects Applies to researchers in different fields (time series, econometrics, finance) Includes numerous illustrations and applications to real financial series Presents a large collection of exercises with corrections Supplemented by a supporting website featuring R codes, Fortran programs, data sets and Problems with corrections GARCH Models, 2nd Edition is an authoritative, state-of-the-art reference that is ideal for graduate students, researchers, and practitioners in business and finance seeking to broaden their skills of understanding of econometric time series models.