Quantum Transport in Submicron Devices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Transport in Submicron Devices PDF full book. Access full book title Quantum Transport in Submicron Devices by Wim Magnus. Download full books in PDF and EPUB format.

Quantum Transport in Submicron Devices

Quantum Transport in Submicron Devices PDF Author: Wim Magnus
Publisher: Springer Science & Business Media
ISBN: 3642561330
Category : Technology & Engineering
Languages : en
Pages : 276

Book Description
The aim of this book is to resolve the problem of electron and hole transport with a coherent and consistent theory that is relevant to the understanding of transport phenomena in submicron devices. Along the road, readers encounter landmarks in theoretical physics as the authors guide them through the strong and weak aspects of various hypotheses.

Quantum Transport in Submicron Devices

Quantum Transport in Submicron Devices PDF Author: Wim Magnus
Publisher: Springer Science & Business Media
ISBN: 3642561330
Category : Technology & Engineering
Languages : en
Pages : 276

Book Description
The aim of this book is to resolve the problem of electron and hole transport with a coherent and consistent theory that is relevant to the understanding of transport phenomena in submicron devices. Along the road, readers encounter landmarks in theoretical physics as the authors guide them through the strong and weak aspects of various hypotheses.

Quantum Transport in Submicron Devices

Quantum Transport in Submicron Devices PDF Author: Wim Magnus
Publisher:
ISBN: 9783642561344
Category :
Languages : en
Pages : 292

Book Description
The aim of this book is to resolve the problem of electron and hole transport with a coherent and consistent theory that is relevant to the understanding of transport phenomena in submicron devices. Along the road, readers encounter landmarks in theoretical physics as the authors guide them through the strong and weak aspects of various hypotheses.

High Field Quantum Transport in Submicron Devices

High Field Quantum Transport in Submicron Devices PDF Author: Robert James Sullivan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


The Physics of Submicron Semiconductor Devices

The Physics of Submicron Semiconductor Devices PDF Author: Harold L. Grubin
Publisher: Springer Science & Business Media
ISBN: 1489923829
Category : Technology & Engineering
Languages : en
Pages : 729

Book Description
The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES......................................... 223 C. Calandra DEEP LEVELS AT COMPOUND-SEMICONDUCTOR INTERFACES........... 253 W. Monch ENSEMBLE MONTE CARLO TECHNIqUES............................. 289 C. Jacoboni NOISE AND DIFFUSION IN SUBMICRON STRUCTURES................. 323 L. Reggiani SUPERLATTICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 . . . . . . . . . . . . K. Hess SUBMICRON LITHOGRAPHY 373 C. D. W. Wilkinson and S. P. Beaumont QUANTUM EFFECTS IN DEVICE STRUCTURES DUE TO SUBMICRON CONFINEMENT IN ONE DIMENSION.... ....................... 401 B. D. McCombe vii viii CONTENTS PHYSICS OF HETEROSTRUCTURES AND HETEROSTRUCTURE DEVICES..... 445 P. J. Price CORRELATION EFFECTS IN SHORT TIME, NONS TAT I ONARY TRANSPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 . . . . . . . . . . . . J. J. Niez DEVICE-DEVICE INTERACTIONS............ ...................... 503 D. K. Ferry QUANTUM TRANSPORT AND THE WIGNER FUNCTION................... 521 G. J. Iafrate FAR INFRARED MEASUREMENTS OF VELOCITY OVERSHOOT AND HOT ELECTRON DYNAMICS IN SEMICONDUCTOR DEVICES............. 577 S. J. Allen, Jr.

Acadian Contracts in Southwest Louisiana

Acadian Contracts in Southwest Louisiana PDF Author: Lauren C. Post
Publisher:
ISBN:
Category : Agriculture
Languages : en
Pages : 12

Book Description


Utilization of Quantum Distribution Functions for Ultra-Submicron Device Transport

Utilization of Quantum Distribution Functions for Ultra-Submicron Device Transport PDF Author: G. J. Iafrate
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
This paper puts forth a formalism for treating ultra-submicron device transport. The formalism results in a useful and attractive methodology for describing quantum device transport in that the theory is derived from a fully quantum mechanical representation, yet implicitly contains elements of the semiclassical semiconductor transport picture. The basic three semiconductor quantum transport equations were derived using the Wigner distribution function. These transport equations were shown to contain explicit quantum corrections; these quantum corrections are non-negligible when the transit lengths of the semiconductor device are of the order of the carrier deBroglie wavelength. Since the carrier deBroglie wavelength for carriers is of the order of hundreds of angstroms in III-V device materials of interest to the Army, the quantum description of transport as described here will play a vital role in predicting the electrical behavior of present and future generation ultra-submicron devices. In future studies, theoretical efforts will be expanded to include device modeling of submicron and ultra-submicron semiconductor devices such as P-N junctions, planar doped barriers, and one- and two-dimensional superlattices; for these devices, it is clear that quantum transport will indeed be necessary to explain their semiconductor transport characteristics.

Physics of Submicron Devices

Physics of Submicron Devices PDF Author: David K. Ferry
Publisher: Springer Science & Business Media
ISBN: 1461532841
Category : Science
Languages : en
Pages : 409

Book Description
The purposes of this book are many. First, we must point out that it is not a device book, as a proper treatment of the range of important devices would require a much larger volume even without treating the important physics for submicron devices. Rather, the book is written principally to pull together and present in a single place, and in a (hopefully) uniform treatment, much of the understanding on relevant physics for submicron devices. Indeed, the understand ing that we are trying to convey through this work has existed in the literature for quite some time, but has not been brought to the full attention of those whose business is the making of submicron devices. It should be remarked that much of the important physics that is discussed here may not be found readily in devices at the 1.0-JLm level, but will be found to be dominant at the O.I-JLm level. The range between these two is rapidly being covered as technology moves from the 256K RAM to the 16M RAM chips.

Theoretical Studies of Quantum Transport in Submicron Semiconductor Electronic Devices

Theoretical Studies of Quantum Transport in Submicron Semiconductor Electronic Devices PDF Author: George Neofotistos
Publisher:
ISBN:
Category : Quantum theory
Languages : en
Pages : 276

Book Description


Quantum Transport in Semiconductor Submicron Structures

Quantum Transport in Semiconductor Submicron Structures PDF Author: B. Kramer
Publisher: Springer Science & Business Media
ISBN: 9400917600
Category : Science
Languages : en
Pages : 382

Book Description
The articles in this book have been selected from the lectures of a NATO Advanced Study Institute held at Bad Lauterberg (Germany) in August 1995. Internationally well-known researchers in the field of mesoscopic quantum physics provide insight into the fundamental physics underlying the mesoscopic transport phenomena in structured semiconductor inversion layers. In addition, some of the most recent achievements are reported in contributed papers. The aim of the volume is not to give an overview over the field. Instead, emphasis is on interaction and correlation phenomena that turn out to be of increasing importance for the understanding of the phenomena in the quantum Hall regime, and in the transport through quantum dots. The present status of the quantum Hall experiments and theory is reviewed. As a "key example" for non-Fermi liquid behavior the Luttinger liquid is introduced, including some of the most recent developments. It is not only of importance for the fractional quantum Hall effect, but also for the understanding of transport in quantum wires. Furthermore, the chaotic and the correlation aspects of the transport in quantum dot systems are described. The status of the experimental work in the area of persistent currents in semiconductor systems is outlined. The construction of one of the first single-electron transistors is reported. The theoretical approach to mesoscopic transport, presently a most active area, is treated, and some aspects of time-dependent transport phenomena are also discussed.

Quantum Transport in Ultrasmall Devices

Quantum Transport in Ultrasmall Devices PDF Author: David K. Ferry
Publisher: Springer Science & Business Media
ISBN: 1461519675
Category : Science
Languages : en
Pages : 542

Book Description
The operation of semiconductor devices depends upon the use of electrical potential barriers (such as gate depletion) in controlling the carrier densities (electrons and holes) and their transport. Although a successful device design is quite complicated and involves many aspects, the device engineering is mostly to devise a "best" device design by defIning optimal device structures and manipulating impurity profIles to obtain optimal control of the carrier flow through the device. This becomes increasingly diffIcult as the device scale becomes smaller and smaller. Since the introduction of integrated circuits, the number of individual transistors on a single chip has doubled approximately every three years. As the number of devices has grown, the critical dimension of the smallest feature, such as a gate length (which is related to the transport length defIning the channel), has consequently declined. The reduction of this design rule proceeds approximately by a factor of 1. 4 each generation, which means we will be using 0. 1-0. 15 ). lm rules for the 4 Gb chips a decade from now. If we continue this extrapolation, current technology will require 30 nm design rules, and a cell 3 2 size