Quantum Theory of Real Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Theory of Real Materials PDF full book. Access full book title Quantum Theory of Real Materials by James R. Chelikowsky. Download full books in PDF and EPUB format.

Quantum Theory of Real Materials

Quantum Theory of Real Materials PDF Author: James R. Chelikowsky
Publisher: Springer Science & Business Media
ISBN: 9780792396666
Category : Science
Languages : en
Pages : 580

Book Description
A Festschrift in honor of Professor Marvin L. Cohen This volume is a Festschrift in honor of Professor Marvin L. Cohen. The articles, contributed by leading researchers in condensed matter physics, high-light recent advances in the use of quantum theory to explain and predict properties of real materials. The invention of quantum mechanics in the 1920's provided detailed descriptions of the electronic structure of atoms. However, a similar understanding of solids has been achieved only in the past 30 years, owing to the complex electron-ion and electron electron interactions in these systems. Professor Cohen is a central figure in this achievement. His development of the pseudopotential and total energy methods provided an alternate route using computers for the exploration of solids and new materials even when they have not yet been synthesized. Professor Cohen's contributions to materials theory have been both fundamental and encompassing. The corpus of his work consists of over 500 papers and a textbook. His band structures for semiconductors are used worldwide by researchers in solid state physics and chemistry and by device engineers. Professor Cohen's own use of his theories has resulted in the determination of the electronic structure, optical properties, structural and vibrational properties, and superconducting properties of numerous condensed matter systems including semiconductors, metals, surfaces, interfaces, defects in solids, clusters, and novel materials such as the fullerides and nanotubes.

Quantum Theory of Real Materials

Quantum Theory of Real Materials PDF Author: James R. Chelikowsky
Publisher: Springer Science & Business Media
ISBN: 9780792396666
Category : Science
Languages : en
Pages : 580

Book Description
A Festschrift in honor of Professor Marvin L. Cohen This volume is a Festschrift in honor of Professor Marvin L. Cohen. The articles, contributed by leading researchers in condensed matter physics, high-light recent advances in the use of quantum theory to explain and predict properties of real materials. The invention of quantum mechanics in the 1920's provided detailed descriptions of the electronic structure of atoms. However, a similar understanding of solids has been achieved only in the past 30 years, owing to the complex electron-ion and electron electron interactions in these systems. Professor Cohen is a central figure in this achievement. His development of the pseudopotential and total energy methods provided an alternate route using computers for the exploration of solids and new materials even when they have not yet been synthesized. Professor Cohen's contributions to materials theory have been both fundamental and encompassing. The corpus of his work consists of over 500 papers and a textbook. His band structures for semiconductors are used worldwide by researchers in solid state physics and chemistry and by device engineers. Professor Cohen's own use of his theories has resulted in the determination of the electronic structure, optical properties, structural and vibrational properties, and superconducting properties of numerous condensed matter systems including semiconductors, metals, surfaces, interfaces, defects in solids, clusters, and novel materials such as the fullerides and nanotubes.

Quantum Theory of Materials

Quantum Theory of Materials PDF Author: Efthimios Kaxiras
Publisher: Cambridge University Press
ISBN: 0521117119
Category : Science
Languages : en
Pages : 679

Book Description
An accessible overview of the concepts and tools essential to the physics of materials, with applications, exercises, and color figures.

Problem Solving in Quantum Mechanics

Problem Solving in Quantum Mechanics PDF Author: Marc Cahay
Publisher: John Wiley & Sons
ISBN: 1118988752
Category : Science
Languages : en
Pages : 372

Book Description
This topical and timely textbook is a collection of problems for students, researchers, and practitioners interested in state-of-the-art material and device applications in quantum mechanics. Most problem are relevant either to a new device or a device concept or to current research topics which could spawn new technology. It deals with the practical aspects of the field, presenting a broad range of essential topics currently at the leading edge of technological innovation. Includes discussion on: Properties of Schroedinger Equation Operators Bound States in Nanostructures Current and Energy Flux Densities in Nanostructures Density of States Transfer and Scattering Matrix Formalisms for Modelling Diffusive Quantum Transport Perturbation Theory, Variational Approach and their Applications to Device Problems Electrons in a Magnetic or Electromagnetic Field and Associated Phenomena Time-dependent Perturbation Theory and its Applications Optical Properties of Nanostructures Problems in Quantum Mechanics: For Material Scientists, Applied Physicists and Device Engineers is an ideal companion to engineering, condensed matter physics or materials science curricula. It appeals to future and present engineers, physicists, and materials scientists, as well as professionals in these fields needing more in-depth understanding of nanotechnology and nanoscience.

Quantum Aspects of Life

Quantum Aspects of Life PDF Author: Abbott
Publisher: Imperial College Press
ISBN: 1848162553
Category : Science
Languages : en
Pages : 469

Book Description
This book presents the hotly debated question of whether quantum mechanics plays a non-trivial role in biology. In a timely way, it sets out a distinct quantum biology agenda. The burgeoning fields of nanotechnology, biotechnology, quantum technology, and quantum information processing are now strongly converging. The acronym BINS, for Bio-Info-Nano-Systems, has been coined to describe the synergetic interface of these several disciplines. The living cell is an information replicating and processing system that is replete with naturally-evolved nanomachines, which at some level require a quantum mechanical description. As quantum engineering and nanotechnology meet, increasing use will be made of biological structures, or hybrids of biological and fabricated systems, for producing novel devices for information storage and processing and other tasks. An understanding of these systems at a quantum mechanical level will be indispensable.

The Quantum Nature Of Materials

The Quantum Nature Of Materials PDF Author: Antonio H Castro Neto
Publisher: World Scientific
ISBN: 9811242429
Category : Science
Languages : en
Pages : 493

Book Description
This self-contained book takes the reader on a journey from the basic facts about atoms to topics at the forefront of current condensed matter research, giving students a broad view of materials science.The contents grew out of the lectures on solid state physics given to both theorists and experimentalists in the US who had little previous background in the area. The topics are of direct relevance for the interpretation of experimental data. Even if they may not be of chronological order, their universality is emphasized. The mathematics is simplified without sacrificing precision, providing an intuitive understanding of the phenomena discussed.The book is easily accessible to any mathematically inclined scientist or engineer with a basic knowledge of quantum mechanics.

Quantum Theory of the Electron Liquid

Quantum Theory of the Electron Liquid PDF Author: Gabriele Giuliani
Publisher: Cambridge University Press
ISBN: 1139471589
Category : Science
Languages : en
Pages : 779

Book Description
Modern electronic devices and novel materials often derive their extraordinary properties from the intriguing, complex behavior of large numbers of electrons forming what is known as an electron liquid. This book provides an in-depth introduction to the physics of the interacting electron liquid in a broad variety of systems, including metals, semiconductors, artificial nano-structures, atoms and molecules. One, two and three dimensional systems are treated separately and in parallel. Different phases of the electron liquid, from the Landau Fermi liquid to the Wigner crystal, from the Luttinger liquid to the quantum Hall liquid are extensively discussed. Both static and time-dependent density functional theory are presented in detail. Although the emphasis is on the development of the basic physical ideas and on a critical discussion of the most useful approximations, the formal derivation of the results is highly detailed and based on the simplest, most direct methods.

An Introduction to Quantum Physics

An Introduction to Quantum Physics PDF Author: Stefanos Trachanas
Publisher: John Wiley & Sons
ISBN: 3527412476
Category : Science
Languages : en
Pages : 564

Book Description
This modern textbook offers an introduction to Quantum Mechanics as a theory that underlies the world around us, from atoms and molecules to materials, lasers, and other applications. The main features of the book are: Emphasis on the key principles with minimal mathematical formalism Demystifying discussions of the basic features of quantum systems, using dimensional analysis and order-of-magnitude estimates to develop intuition Comprehensive overview of the key concepts of quantum chemistry and the electronic structure of solids Extensive discussion of the basic processes and applications of light-matter interactions Online supplement with advanced theory, multiple-choice quizzes, etc.

Quantum Theory

Quantum Theory PDF Author: Mihai V. Putz
Publisher: CRC Press
ISBN: 1926895142
Category : Science
Languages : en
Pages : 274

Book Description
Quantum Theory: Density, Condensation, and Bonding presents in a unitary manner the main actual theories of matter, mainly the density function theory (DFT) for fermions, the Bose-Einstein condensation (BEC) for bosons, and chemical bonding as a special realization of the first two so-called mixed fermionic-bosonic states. The book covers the modern and ultimately developed quantum theories involving the key concepts of density, condensation, and bonding. The book compiles, for the first time, the density functional theory with Bose-Einstein condensation and chemical bonding theories in a fresh and novel perspective. The book introduces modern theories of matter structure and explains the nature of chemical bonds under the consecrated and ultimate quantum paradigms of molecular structure. The book is divided into three parts, one for each level of studies: Part I: Primer Density Functional Theory is suitable for undergraduate introductory courses in physics, chemistry, and the natural sciences. Part II: Primer Density Functional Bose-Einstein Condensation Theory would be suitable for graduate- or master-level courses in physics or natural sciences. Part III: Modern Quantum Theories of Chemical Bonding is written for the post-graduate, master or doctorate courses on quantum structure of molecules in chemistry or natural sciences. Thus, this book is organized as a succession of three linked courses, from undergraduate, to graduate, to postgraduate levels in modern quantum theories of many-body systems. It covers three main concepts: density, condensation, and bonding and contains the most celebrated and challenging theories of matter. The book provides a fresh perspective on the quantum theory of structure of physico-chemical systems and will show students at all levels and researchers the way for future elaboration and discoveries toward the unification of the physical and chemical concepts of matter.

Introductory Quantum Mechanics with MATLAB

Introductory Quantum Mechanics with MATLAB PDF Author: James R. Chelikowsky
Publisher: John Wiley & Sons
ISBN: 352765500X
Category : Technology & Engineering
Languages : en
Pages : 224

Book Description
Presents a unique approach to grasping the concepts of quantum theory with a focus on atoms, clusters, and crystals Quantum theory of atoms and molecules is vitally important in molecular physics, materials science, nanoscience, solid state physics and many related fields. Introductory Quantum Mechanics with MATLAB is designed to be an accessible guide to quantum theory and its applications. The textbook uses the popular MATLAB programming language for the analytical and numerical solution of quantum mechanical problems, with a particular focus on clusters and assemblies of atoms. The textbook is written by a noted researcher and expert on the topic who introduces density functional theory, variational calculus and other practice-proven methods for the solution of quantum-mechanical problems. This important guide: -Presents the material in a didactical manner to help students grasp the concepts and applications of quantum theory -Covers a wealth of cutting-edge topics such as clusters, nanocrystals, transitions and organic molecules -Offers MATLAB codes to solve real-life quantum mechanical problems Written for master's and PhD students in physics, chemistry, material science, and engineering sciences, Introductory Quantum Mechanics with MATLAB contains an accessible approach to understanding the concepts of quantum theory applied to atoms, clusters, and crystals.

Computational Quantum Mechanics for Materials Engineers

Computational Quantum Mechanics for Materials Engineers PDF Author: Levente Vitos
Publisher: Springer Science & Business Media
ISBN: 1846289513
Category : Technology & Engineering
Languages : en
Pages : 237

Book Description
This is the only book to cover the most recent developments in applied quantum theory and their use in modeling materials properties. It describes new approaches to modeling disordered alloys and focuses on those approaches that combine the most efficient quantum-level theories of random alloys with the most sophisticated numerical techniques. In doing so, it establishes a theoretical insight into the electronic structure of complex materials such as stainless steels, Hume-Rothery alloys and silicates.