Author: Pratim Kumar Chattaraj
Publisher: CRC Press
ISBN: 1420065440
Category : Science
Languages : en
Pages : 612
Book Description
In the 1970s, Density Functional Theory (DFT) was borrowed from physics and adapted to chemistry by a handful of visionaries. Now chemical DFT is a diverse and rapidly growing field, its progress fueled by numerous developing practical descriptors that make DFT as useful as it is vast. With 34 chapters written by 65 eminent scientists from 13 diffe
Chemical Reactivity Theory
Author: Pratim Kumar Chattaraj
Publisher: CRC Press
ISBN: 1420065440
Category : Science
Languages : en
Pages : 612
Book Description
In the 1970s, Density Functional Theory (DFT) was borrowed from physics and adapted to chemistry by a handful of visionaries. Now chemical DFT is a diverse and rapidly growing field, its progress fueled by numerous developing practical descriptors that make DFT as useful as it is vast. With 34 chapters written by 65 eminent scientists from 13 diffe
Publisher: CRC Press
ISBN: 1420065440
Category : Science
Languages : en
Pages : 612
Book Description
In the 1970s, Density Functional Theory (DFT) was borrowed from physics and adapted to chemistry by a handful of visionaries. Now chemical DFT is a diverse and rapidly growing field, its progress fueled by numerous developing practical descriptors that make DFT as useful as it is vast. With 34 chapters written by 65 eminent scientists from 13 diffe
Quantum Theory of Chemical Reactivity
Author: R. Daudel
Publisher: Springer Science & Business Media
ISBN: 940102684X
Category : Science
Languages : en
Pages : 172
Book Description
Quantum Theory of Chemical Reactivity may be read without reference to the fact that it is actually the third of three volumes of a treatise on quantum chemistry, the science resulting from the implementation of mathematical laws in the realm of molecular populations. The first two volumes of the treatise, 'Fondement de la Chimie Tbeorique' and 'Structure Electrique des Molecules' were, like this third volume, originally published by Gauthier-Villars; Pergamon published the English translations of these two volumes. I am grateful to D. Reidel Publishing Company for translating the third volume of the treatise into English. Readers familiar with English rather than French now have access to the complete series. This treatise is a reflection of the courses I taught at the Sorbonne from 1950 until 1967 to students in their second cycle (3rd and 4th year) and third cycle (5th and 6th year) working towards a doctorate in this particular field. It is based on the reading of over a thousand articles, and is intended for students as well as for physical chemists, and chemists, research workers and engineers taking an interest in quantum chemistry for its own sake or for its application in industry, pharmacology and the life sciences. Reidel's initiative is particularly valuable because in my opinion Quantum Theory of Chemical Reactivity is the most important of the three volumes of the treatise. Doubtless for this reason only the third volume was published in Japanese by Baifukan, thanks to Professors Hayashi and Sohma.
Publisher: Springer Science & Business Media
ISBN: 940102684X
Category : Science
Languages : en
Pages : 172
Book Description
Quantum Theory of Chemical Reactivity may be read without reference to the fact that it is actually the third of three volumes of a treatise on quantum chemistry, the science resulting from the implementation of mathematical laws in the realm of molecular populations. The first two volumes of the treatise, 'Fondement de la Chimie Tbeorique' and 'Structure Electrique des Molecules' were, like this third volume, originally published by Gauthier-Villars; Pergamon published the English translations of these two volumes. I am grateful to D. Reidel Publishing Company for translating the third volume of the treatise into English. Readers familiar with English rather than French now have access to the complete series. This treatise is a reflection of the courses I taught at the Sorbonne from 1950 until 1967 to students in their second cycle (3rd and 4th year) and third cycle (5th and 6th year) working towards a doctorate in this particular field. It is based on the reading of over a thousand articles, and is intended for students as well as for physical chemists, and chemists, research workers and engineers taking an interest in quantum chemistry for its own sake or for its application in industry, pharmacology and the life sciences. Reidel's initiative is particularly valuable because in my opinion Quantum Theory of Chemical Reactivity is the most important of the three volumes of the treatise. Doubtless for this reason only the third volume was published in Japanese by Baifukan, thanks to Professors Hayashi and Sohma.
Principles and Applications of Quantum Chemistry
Author: V.P. Gupta
Publisher: Academic Press
ISBN: 0128035013
Category : Science
Languages : en
Pages : 480
Book Description
Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author's extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules. - Simplified mathematical content and derivations for reader understanding - Useful overview of advances in the field such as Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) - Accessible level for students and researchers interested in the use of quantum chemistry tools
Publisher: Academic Press
ISBN: 0128035013
Category : Science
Languages : en
Pages : 480
Book Description
Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author's extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules. - Simplified mathematical content and derivations for reader understanding - Useful overview of advances in the field such as Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) - Accessible level for students and researchers interested in the use of quantum chemistry tools
Graph Theoretical Approaches to Chemical Reactivity
Author: Danail D. Bonchev
Publisher: Springer Science & Business Media
ISBN: 9401112029
Category : Science
Languages : en
Pages : 291
Book Description
The progress in computer technology during the last 10-15 years has enabled the performance of ever more precise quantum mechanical calculations related to structure and interactions of chemical compounds. However, the qualitative models relating electronic structure to molecular geometry have not progressed at the same pace. There is a continuing need in chemistry for simple concepts and qualitatively clear pictures that are also quantitatively comparable to ab initio quantum chemical calculations. Topological methods and, more specifically, graph theory as a fixed-point topology, provide in principle a chance to fill this gap. With its more than 100 years of applications to chemistry, graph theory has proven to be of vital importance as the most natural language of chemistry. The explosive development of chemical graph theory during the last 20 years has increasingly overlapped with quantum chemistry. Besides contributing to the solution of various problems in theoretical chemistry, this development indicates that topology is an underlying principle that explains the success of quantum mechanics and goes beyond it, thus promising to bear more fruit in the future.
Publisher: Springer Science & Business Media
ISBN: 9401112029
Category : Science
Languages : en
Pages : 291
Book Description
The progress in computer technology during the last 10-15 years has enabled the performance of ever more precise quantum mechanical calculations related to structure and interactions of chemical compounds. However, the qualitative models relating electronic structure to molecular geometry have not progressed at the same pace. There is a continuing need in chemistry for simple concepts and qualitatively clear pictures that are also quantitatively comparable to ab initio quantum chemical calculations. Topological methods and, more specifically, graph theory as a fixed-point topology, provide in principle a chance to fill this gap. With its more than 100 years of applications to chemistry, graph theory has proven to be of vital importance as the most natural language of chemistry. The explosive development of chemical graph theory during the last 20 years has increasingly overlapped with quantum chemistry. Besides contributing to the solution of various problems in theoretical chemistry, this development indicates that topology is an underlying principle that explains the success of quantum mechanics and goes beyond it, thus promising to bear more fruit in the future.
Chemical Reactivity
Author: Savas Kaya
Publisher: Elsevier
ISBN: 032390257X
Category : Science
Languages : en
Pages : 606
Book Description
The growth of technology for chemical assessment has led to great developments in the investigation of chemical reactivity in recent years, but key information is often dispersed across many different research fields. Combining both original principles and the cutting-edge theories used in chemical reactivity analysis, Chemical Reactivity, Volume 1 present the latest developments in theoretical chemistry and its application for the assessment of chemical processes. Beginning with an exploration of different theories and principles relating to electronic structure and reactivity of confined electronic systems, the book goes on to highlight key information on such topics as Dyson orbitals, target-ion overlaps, reaction fragility, magnetizability principles and the Fuki function. Density Functional Theory is discussed in relation to numerous different principles and approaches, with further information on constrained methods and diabatic models, bonding evolution theory, orbital-based population analysis models and charge transfer models, and Quantum chemistry and QTAIM. Consolidating the knowledge of a global team of experts in the field, Chemical Reactivity, Volume 1: Theories and Principles is a useful resource for both students and researchers interested in gaining greater understanding of the principles and theories underpinning chemical reactivity analysis. Provides readers with the key information needed to gain a good overview of contemporary chemical reactivity studies and a clear understanding of the theory behind state-of-the-art methods in the field Highlights advances in the computational descriptions of reactivity, including reactivity in confined environments, conceptual density functional theory, and multi-reference quantum chemistry Provides comprehensive coverage by consolidating the knowledge of many well-known researchers in the field from around the world
Publisher: Elsevier
ISBN: 032390257X
Category : Science
Languages : en
Pages : 606
Book Description
The growth of technology for chemical assessment has led to great developments in the investigation of chemical reactivity in recent years, but key information is often dispersed across many different research fields. Combining both original principles and the cutting-edge theories used in chemical reactivity analysis, Chemical Reactivity, Volume 1 present the latest developments in theoretical chemistry and its application for the assessment of chemical processes. Beginning with an exploration of different theories and principles relating to electronic structure and reactivity of confined electronic systems, the book goes on to highlight key information on such topics as Dyson orbitals, target-ion overlaps, reaction fragility, magnetizability principles and the Fuki function. Density Functional Theory is discussed in relation to numerous different principles and approaches, with further information on constrained methods and diabatic models, bonding evolution theory, orbital-based population analysis models and charge transfer models, and Quantum chemistry and QTAIM. Consolidating the knowledge of a global team of experts in the field, Chemical Reactivity, Volume 1: Theories and Principles is a useful resource for both students and researchers interested in gaining greater understanding of the principles and theories underpinning chemical reactivity analysis. Provides readers with the key information needed to gain a good overview of contemporary chemical reactivity studies and a clear understanding of the theory behind state-of-the-art methods in the field Highlights advances in the computational descriptions of reactivity, including reactivity in confined environments, conceptual density functional theory, and multi-reference quantum chemistry Provides comprehensive coverage by consolidating the knowledge of many well-known researchers in the field from around the world
Collision Theory and Statistical Theory of Chemical Reactions
Author: S. G. Christov
Publisher: Springer Science & Business Media
ISBN: 3642931421
Category : Science
Languages : en
Pages : 336
Book Description
Since the discovery of quantum mechanics,more than fifty years ago,the theory of chemical reactivity has taken the first steps of its development. The knowledge of the electronic structure and the properties of atoms and molecules is the basis for an un derstanding of their interactions in the elementary act of any chemical process. The increasing information in this field during the last decades has stimulated the elaboration of the methods for evaluating the potential energy of the reacting systems as well as the creation of new methods for calculation of reaction probabili ties (or cross sections) and rate constants. An exact solution to these fundamental problems of theoretical chemistry based on quan tum mechanics and statistical physics, however, is still impossible even for the simplest chemical reactions. Therefore,different ap proximations have to be used in order to simplify one or the other side of the problem. At present, the basic approach in the theory of chemical reactivity consists in separating the motions of electrons and nu clei by making use of the Born-Oppenheimer adiabatic approximation to obtain electronic energy as an effective potential for nuclear motion. If the potential energy surface is known, one can calculate, in principle, the reaction probability for any given initial state of the system. The reaction rate is then obtained as an average of the reaction probabilities over all possible initial states of the reacting ~artic1es. In the different stages of this calculational scheme additional approximations are usually introduced.
Publisher: Springer Science & Business Media
ISBN: 3642931421
Category : Science
Languages : en
Pages : 336
Book Description
Since the discovery of quantum mechanics,more than fifty years ago,the theory of chemical reactivity has taken the first steps of its development. The knowledge of the electronic structure and the properties of atoms and molecules is the basis for an un derstanding of their interactions in the elementary act of any chemical process. The increasing information in this field during the last decades has stimulated the elaboration of the methods for evaluating the potential energy of the reacting systems as well as the creation of new methods for calculation of reaction probabili ties (or cross sections) and rate constants. An exact solution to these fundamental problems of theoretical chemistry based on quan tum mechanics and statistical physics, however, is still impossible even for the simplest chemical reactions. Therefore,different ap proximations have to be used in order to simplify one or the other side of the problem. At present, the basic approach in the theory of chemical reactivity consists in separating the motions of electrons and nu clei by making use of the Born-Oppenheimer adiabatic approximation to obtain electronic energy as an effective potential for nuclear motion. If the potential energy surface is known, one can calculate, in principle, the reaction probability for any given initial state of the system. The reaction rate is then obtained as an average of the reaction probabilities over all possible initial states of the reacting ~artic1es. In the different stages of this calculational scheme additional approximations are usually introduced.
Reviews of Modern Quantum Chemistry
Author: Kali Das Sen
Publisher: World Scientific
ISBN: 9812775706
Category : Science
Languages : en
Pages : 1882
Book Description
This important book collects together stateOCoofOCotheOCoart reviews of diverse topics covering almost all the major areas of modern quantum chemistry. The current focus in the discipline of chemistry OCo synthesis, structure, reactivity and dynamics OCo is mainly on control . A variety of essential computational tools at the disposal of chemists have emerged from recent studies in quantum chemistry. The acceptance and application of these tools in the interfacial disciplines of the life and physical sciences continue to grow. The new era of modern quantum chemistry throws up promising potentialities for further research. Reviews of Modern Quantum Chemistry is a joint endeavor, in which renowned scientists from leading universities and research laboratories spanning 22 countries present 59 inOCodepth reviews. Along with a personal introduction written by Professor Walter Kohn, Nobel laureate (Chemistry, 1998), the articles celebrate the scientific contributions of Professor Robert G Parr on the occasion of his 80th birthday. List of Contributors: W Kohn, M Levy, R Pariser, B R Judd, E Lo, B N Plakhutin, A Savin, P Politzer, P Lane, J S Murray, A J Thakkar, S R Gadre, R F Nalewajski, K Jug, M Randic, G Del Re, U Kaldor, E Eliav, A Landau, M Ehara, M Ishida, K Toyota, H Nakatsuji, G Maroulis, A M Mebel, S Mahapatra, R CarbOCoDorca, u Nagy, I A Howard, N H March, SOCoB Liu, R G Pearson, N Watanabe, S TenOCono, S Iwata, Y Udagawa, E Valderrama, X Fradera, I Silanes, J M Ugalde, R J Boyd, E V Ludea, V V Karasiev, L Massa, T Tsuneda, K Hirao, J-M Tao, J P Perdew, O V Gritsenko, M Grning, E J Baerends, F Aparicio, J Garza, A Cedillo, M Galvin, R Vargas, E Engel, A HAck, R N Schmid, R M Dreizler, J Poater, M Sola, M Duran, J Robles, X Fradera, P K Chattaraj, A Poddar, B Maiti, A Cedillo, S Guti(r)rrezOCoOliva, P Jaque, A ToroOCoLabb(r), H Chermette, P Boulet, S Portmann, P Fuentealba, R Contreras, P Geerlings, F De Proft, R Balawender, D P Chong, A Vela, G Merino, F Kootstra, P L de Boeij, R van Leeuwen, J G Snijders, N T Maitra, K Burke, H Appel, E K U Gross, M K Harbola, H F Hameka, C A Daul, I Ciofini, A Bencini, S K Ghosh, A Tachibana, J M CabreraOCoTrujillo, F Tenorio, O Mayorga, M Cases, V Kumar, Y Kawazoe, A M KAster, P Calaminici, Z Gmez, U Reveles, J A Alonso, L M Molina, M J Lpez, F Dugue, A Maanes, C A Fahlstrom, J A Nichols, D A Dixon, P A Derosa, A G Zacarias, J M Seminario, D G Kanhere, A Vichare, S A Blundell, ZOCoY Lu, HOCoY Liu, M Elstner, WOCoT Yang, J Muoz, X Fradera, M Orozco, F J Luque, P Tarakeshwar, H M Lee, K S Kim, M Valiev, E J Bylaska, A Gramada, J H Weare, J Brickmann, M Keil, T E Exner, M Hoffmann & J Rychlewski. Contents: Volume I: Applications of the Automorphisms of SO(8) to the Atomic f Shell (B R Judd & E Lo); Probability Distributions and Valence Shells in Atoms (A Savin); Information Theoretical Approaches to Quantum Chemistry (S R Gadre); Quantum Chemical Justification for Clar''s Valence Structures (M Randic); Functional Expansion Approach in Density Functional Theory (S-B Liu); Normconserving Pseudopotentials for the Exact Exchange Functional (E Engel et al.); Volume II: Chemical Reactivity and Dynamics within a Density-based Quantum Mechanical Framework (P K Chattaraj et al.); Fukui Functions and Local Softness (H Chermette et al.); The Nuclear Fukui Function (P Geerlings et al.); Causality in Time-Dependent Density-Functional Theory (M K Harbola); Theoretical Studies of Molecular Magnetism (H F Hameka); Melting in Finite-Sized Systems (D G Kanhere et al.); Density Functional Theory (DFT) and Drug Design (M Hoffmann & J Rychlewski); and other papers. Readership: Researchers and academics in computational, physical, fullerene, industrial, polymer, solid state and theoretical/quantum chemistry; nanoscience, superconductivity & magnetic materials, surface science; atomic, computational and condensed matter physics; and thermodynamics."
Publisher: World Scientific
ISBN: 9812775706
Category : Science
Languages : en
Pages : 1882
Book Description
This important book collects together stateOCoofOCotheOCoart reviews of diverse topics covering almost all the major areas of modern quantum chemistry. The current focus in the discipline of chemistry OCo synthesis, structure, reactivity and dynamics OCo is mainly on control . A variety of essential computational tools at the disposal of chemists have emerged from recent studies in quantum chemistry. The acceptance and application of these tools in the interfacial disciplines of the life and physical sciences continue to grow. The new era of modern quantum chemistry throws up promising potentialities for further research. Reviews of Modern Quantum Chemistry is a joint endeavor, in which renowned scientists from leading universities and research laboratories spanning 22 countries present 59 inOCodepth reviews. Along with a personal introduction written by Professor Walter Kohn, Nobel laureate (Chemistry, 1998), the articles celebrate the scientific contributions of Professor Robert G Parr on the occasion of his 80th birthday. List of Contributors: W Kohn, M Levy, R Pariser, B R Judd, E Lo, B N Plakhutin, A Savin, P Politzer, P Lane, J S Murray, A J Thakkar, S R Gadre, R F Nalewajski, K Jug, M Randic, G Del Re, U Kaldor, E Eliav, A Landau, M Ehara, M Ishida, K Toyota, H Nakatsuji, G Maroulis, A M Mebel, S Mahapatra, R CarbOCoDorca, u Nagy, I A Howard, N H March, SOCoB Liu, R G Pearson, N Watanabe, S TenOCono, S Iwata, Y Udagawa, E Valderrama, X Fradera, I Silanes, J M Ugalde, R J Boyd, E V Ludea, V V Karasiev, L Massa, T Tsuneda, K Hirao, J-M Tao, J P Perdew, O V Gritsenko, M Grning, E J Baerends, F Aparicio, J Garza, A Cedillo, M Galvin, R Vargas, E Engel, A HAck, R N Schmid, R M Dreizler, J Poater, M Sola, M Duran, J Robles, X Fradera, P K Chattaraj, A Poddar, B Maiti, A Cedillo, S Guti(r)rrezOCoOliva, P Jaque, A ToroOCoLabb(r), H Chermette, P Boulet, S Portmann, P Fuentealba, R Contreras, P Geerlings, F De Proft, R Balawender, D P Chong, A Vela, G Merino, F Kootstra, P L de Boeij, R van Leeuwen, J G Snijders, N T Maitra, K Burke, H Appel, E K U Gross, M K Harbola, H F Hameka, C A Daul, I Ciofini, A Bencini, S K Ghosh, A Tachibana, J M CabreraOCoTrujillo, F Tenorio, O Mayorga, M Cases, V Kumar, Y Kawazoe, A M KAster, P Calaminici, Z Gmez, U Reveles, J A Alonso, L M Molina, M J Lpez, F Dugue, A Maanes, C A Fahlstrom, J A Nichols, D A Dixon, P A Derosa, A G Zacarias, J M Seminario, D G Kanhere, A Vichare, S A Blundell, ZOCoY Lu, HOCoY Liu, M Elstner, WOCoT Yang, J Muoz, X Fradera, M Orozco, F J Luque, P Tarakeshwar, H M Lee, K S Kim, M Valiev, E J Bylaska, A Gramada, J H Weare, J Brickmann, M Keil, T E Exner, M Hoffmann & J Rychlewski. Contents: Volume I: Applications of the Automorphisms of SO(8) to the Atomic f Shell (B R Judd & E Lo); Probability Distributions and Valence Shells in Atoms (A Savin); Information Theoretical Approaches to Quantum Chemistry (S R Gadre); Quantum Chemical Justification for Clar''s Valence Structures (M Randic); Functional Expansion Approach in Density Functional Theory (S-B Liu); Normconserving Pseudopotentials for the Exact Exchange Functional (E Engel et al.); Volume II: Chemical Reactivity and Dynamics within a Density-based Quantum Mechanical Framework (P K Chattaraj et al.); Fukui Functions and Local Softness (H Chermette et al.); The Nuclear Fukui Function (P Geerlings et al.); Causality in Time-Dependent Density-Functional Theory (M K Harbola); Theoretical Studies of Molecular Magnetism (H F Hameka); Melting in Finite-Sized Systems (D G Kanhere et al.); Density Functional Theory (DFT) and Drug Design (M Hoffmann & J Rychlewski); and other papers. Readership: Researchers and academics in computational, physical, fullerene, industrial, polymer, solid state and theoretical/quantum chemistry; nanoscience, superconductivity & magnetic materials, surface science; atomic, computational and condensed matter physics; and thermodynamics."
Quantum Theory of Chemical Reactions
Author: R. Daudel
Publisher: Springer Science & Business Media
ISBN: 940109716X
Category : Science
Languages : en
Pages : 325
Book Description
Publisher: Springer Science & Business Media
ISBN: 940109716X
Category : Science
Languages : en
Pages : 325
Book Description
Ideas of Quantum Chemistry
Author: Lucjan Piela
Publisher: Elsevier
ISBN: 0080466761
Category : Science
Languages : en
Pages : 1122
Book Description
Ideas of Quantum Chemistry shows how quantum mechanics is applied to chemistry to give it a theoretical foundation. The structure of the book (a TREE-form) emphasizes the logical relationships between various topics, facts and methods. It shows the reader which parts of the text are needed for understanding specific aspects of the subject matter. Interspersed throughout the text are short biographies of key scientists and their contributions to the development of the field.Ideas of Quantum Chemistry has both textbook and reference work aspects. Like a textbook, the material is organized into digestable sections with each chapter following the same structure. It answers frequently asked questions and highlights the most important conclusions and the essential mathematical formulae in the text. In its reference aspects, it has a broader range than traditional quantum chemistry books and reviews virtually all of the pertinent literature. It is useful both for beginners as well as specialists in advanced topics of quantum chemistry. The book is supplemented by an appendix on the Internet.* Presents the widest range of quantum chemical problems covered in one book * Unique structure allows material to be tailored to the specific needs of the reader * Informal language facilitates the understanding of difficult topics
Publisher: Elsevier
ISBN: 0080466761
Category : Science
Languages : en
Pages : 1122
Book Description
Ideas of Quantum Chemistry shows how quantum mechanics is applied to chemistry to give it a theoretical foundation. The structure of the book (a TREE-form) emphasizes the logical relationships between various topics, facts and methods. It shows the reader which parts of the text are needed for understanding specific aspects of the subject matter. Interspersed throughout the text are short biographies of key scientists and their contributions to the development of the field.Ideas of Quantum Chemistry has both textbook and reference work aspects. Like a textbook, the material is organized into digestable sections with each chapter following the same structure. It answers frequently asked questions and highlights the most important conclusions and the essential mathematical formulae in the text. In its reference aspects, it has a broader range than traditional quantum chemistry books and reviews virtually all of the pertinent literature. It is useful both for beginners as well as specialists in advanced topics of quantum chemistry. The book is supplemented by an appendix on the Internet.* Presents the widest range of quantum chemical problems covered in one book * Unique structure allows material to be tailored to the specific needs of the reader * Informal language facilitates the understanding of difficult topics
Quantum Chemistry of Organic Compounds
Author: Vladimir I. Minkin
Publisher: Springer Science & Business Media
ISBN: 3642756794
Category : Science
Languages : en
Pages : 281
Book Description
Chemistry is the science of substances (today we would say molecules) and their transformations. Central to this science is the complexity of shape and function of its typical representatives. There lies, no longer dependent on its vitalistic antecedents, the rich realm of molecular possibility called organic chemistry. In this century we have learned how to determine the three-dimensional structure of molecules. Now chemistry as whole, and organic chemistry in particular, is poised to move to the exploration of its dynamic dimension, the busy business of transformations or reactions. Oh, it has been done all along, for what else is synthesis? What I mean is that the theoretical framework accom panying organic chemistry, long and fruitfully laboring on a quantum chemical understanding of structure, is now making the first tentative motions toward building an organic theory of reactivity. The Minkin, Simkin, Minyaev book takes us in that direction. It incorporates the lessons of frontier orbital theory and of Hartree-Fock SCF calculations; what chemical physicists have learned about trajectory calculations of selected reactions, and a simplified treatment of all-important solvent effects. It is written by professional, accomplished organic chemists for other organic chemists; it is consistently even-toned in its presentation of contending approaches. And very much up to date. That this contemporary work should emerge from a regional university in a country in which science has been highly centralized and organic chemistry not very modern, invites reflection.
Publisher: Springer Science & Business Media
ISBN: 3642756794
Category : Science
Languages : en
Pages : 281
Book Description
Chemistry is the science of substances (today we would say molecules) and their transformations. Central to this science is the complexity of shape and function of its typical representatives. There lies, no longer dependent on its vitalistic antecedents, the rich realm of molecular possibility called organic chemistry. In this century we have learned how to determine the three-dimensional structure of molecules. Now chemistry as whole, and organic chemistry in particular, is poised to move to the exploration of its dynamic dimension, the busy business of transformations or reactions. Oh, it has been done all along, for what else is synthesis? What I mean is that the theoretical framework accom panying organic chemistry, long and fruitfully laboring on a quantum chemical understanding of structure, is now making the first tentative motions toward building an organic theory of reactivity. The Minkin, Simkin, Minyaev book takes us in that direction. It incorporates the lessons of frontier orbital theory and of Hartree-Fock SCF calculations; what chemical physicists have learned about trajectory calculations of selected reactions, and a simplified treatment of all-important solvent effects. It is written by professional, accomplished organic chemists for other organic chemists; it is consistently even-toned in its presentation of contending approaches. And very much up to date. That this contemporary work should emerge from a regional university in a country in which science has been highly centralized and organic chemistry not very modern, invites reflection.