Author: Alex C. Hewson
Publisher: Springer Science & Business Media
ISBN: 9401002134
Category : Science
Languages : en
Pages : 364
Book Description
The NATO sponsored Advanced Research Workshop on "Concepts in Electron Correlation" took place on the Croatian island of Hvar during the period from the 29th of September to the 3rd of October, 2002. The topic of electron correlation is a fundamental one in the field of condensed matter, and one that is being very actively studied both experimentally and theoretically at the present time. The manifestations of electron cor relation are diverse, and play an important role in systems ranging from high temperature superconductors, heavy fermions, manganite compounds with colossal magnetoresistance, transition metal compounds with metal insulator transitions, to mesoscopic systems and quantum dots. The aim of the workshop was to provide an opportunity for a dialogue between exper imentalists and theoreticians to assess the current state of understanding, and to set an agenda for future work. There was also a follow-up workshop on the same topic where the presentations included more background and introductory material for younger researchers in the field. The papers presented in these proceedings clearly demonstrate the di versity of current research on electron correlation. They show that real progress is being made in characterising systems experimentally and in developing theoretical approaches for a quantitative comparison with ex periment. The more one learns, however, the more there is to understand, and many of the contributions help to map out the territory which has yet to be explored. We hope that the articles in this volume will be a stimulus for such future work.
Concepts in Electron Correlation
Author: Alex C. Hewson
Publisher: Springer Science & Business Media
ISBN: 9401002134
Category : Science
Languages : en
Pages : 364
Book Description
The NATO sponsored Advanced Research Workshop on "Concepts in Electron Correlation" took place on the Croatian island of Hvar during the period from the 29th of September to the 3rd of October, 2002. The topic of electron correlation is a fundamental one in the field of condensed matter, and one that is being very actively studied both experimentally and theoretically at the present time. The manifestations of electron cor relation are diverse, and play an important role in systems ranging from high temperature superconductors, heavy fermions, manganite compounds with colossal magnetoresistance, transition metal compounds with metal insulator transitions, to mesoscopic systems and quantum dots. The aim of the workshop was to provide an opportunity for a dialogue between exper imentalists and theoreticians to assess the current state of understanding, and to set an agenda for future work. There was also a follow-up workshop on the same topic where the presentations included more background and introductory material for younger researchers in the field. The papers presented in these proceedings clearly demonstrate the di versity of current research on electron correlation. They show that real progress is being made in characterising systems experimentally and in developing theoretical approaches for a quantitative comparison with ex periment. The more one learns, however, the more there is to understand, and many of the contributions help to map out the territory which has yet to be explored. We hope that the articles in this volume will be a stimulus for such future work.
Publisher: Springer Science & Business Media
ISBN: 9401002134
Category : Science
Languages : en
Pages : 364
Book Description
The NATO sponsored Advanced Research Workshop on "Concepts in Electron Correlation" took place on the Croatian island of Hvar during the period from the 29th of September to the 3rd of October, 2002. The topic of electron correlation is a fundamental one in the field of condensed matter, and one that is being very actively studied both experimentally and theoretically at the present time. The manifestations of electron cor relation are diverse, and play an important role in systems ranging from high temperature superconductors, heavy fermions, manganite compounds with colossal magnetoresistance, transition metal compounds with metal insulator transitions, to mesoscopic systems and quantum dots. The aim of the workshop was to provide an opportunity for a dialogue between exper imentalists and theoreticians to assess the current state of understanding, and to set an agenda for future work. There was also a follow-up workshop on the same topic where the presentations included more background and introductory material for younger researchers in the field. The papers presented in these proceedings clearly demonstrate the di versity of current research on electron correlation. They show that real progress is being made in characterising systems experimentally and in developing theoretical approaches for a quantitative comparison with ex periment. The more one learns, however, the more there is to understand, and many of the contributions help to map out the territory which has yet to be explored. We hope that the articles in this volume will be a stimulus for such future work.
Quantum Phase Transitions in Transverse Field Spin Models
Author: Amit Dutta
Publisher: Cambridge University Press
ISBN: 1316395413
Category : Science
Languages : en
Pages : 358
Book Description
The transverse field Ising and XY models (the simplest quantum spin models) provide the organising principle for the rich variety of interconnected subjects which are covered in this book. From a generic introduction to in-depth discussions of the subtleties of the transverse field Ising and related models, it includes the essentials of quantum dynamics and quantum information. A wide range of relevant topics has also been provided: quantum phase transitions, various measures of quantum information, the effects of disorder and frustration, quenching dynamics and the Kibble–Zurek scaling relation, the Kitaev model, topological phases of quantum systems, and bosonisation. In addition, it also discusses the experimental studies of transverse field models (including the first experimental realisation of quantum annealing) and the recent realisation of the transverse field Ising model using tunable Josephson junctions. Further, it points to the obstacles still remaining to develop a successful quantum computer.
Publisher: Cambridge University Press
ISBN: 1316395413
Category : Science
Languages : en
Pages : 358
Book Description
The transverse field Ising and XY models (the simplest quantum spin models) provide the organising principle for the rich variety of interconnected subjects which are covered in this book. From a generic introduction to in-depth discussions of the subtleties of the transverse field Ising and related models, it includes the essentials of quantum dynamics and quantum information. A wide range of relevant topics has also been provided: quantum phase transitions, various measures of quantum information, the effects of disorder and frustration, quenching dynamics and the Kibble–Zurek scaling relation, the Kitaev model, topological phases of quantum systems, and bosonisation. In addition, it also discusses the experimental studies of transverse field models (including the first experimental realisation of quantum annealing) and the recent realisation of the transverse field Ising model using tunable Josephson junctions. Further, it points to the obstacles still remaining to develop a successful quantum computer.
Computer Simulation Studies in Condensed-Matter Physics XVIII
Author: David P. Landau
Publisher: Springer
ISBN: 9783540326397
Category : Science
Languages : en
Pages : 173
Book Description
This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter.
Publisher: Springer
ISBN: 9783540326397
Category : Science
Languages : en
Pages : 173
Book Description
This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter.
Understanding Quantum Phase Transitions
Author: Lincoln Carr
Publisher: CRC Press
ISBN: 1439802610
Category : Science
Languages : en
Pages : 754
Book Description
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit
Publisher: CRC Press
ISBN: 1439802610
Category : Science
Languages : en
Pages : 754
Book Description
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit
Conductor Insulator Quantum Phase Transitions
Author: Vladimir Dobrosavljevic
Publisher: Oxford University Press
ISBN: 0199592594
Category : Science
Languages : en
Pages : 583
Book Description
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.
Publisher: Oxford University Press
ISBN: 0199592594
Category : Science
Languages : en
Pages : 583
Book Description
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.
Finite Size Effects In Correlated Electron Models: Exact Results
Author: Andrei Zvyagin
Publisher: World Scientific
ISBN: 1783260475
Category : Science
Languages : en
Pages : 380
Book Description
The book presents exact results for one-dimensional models (including quantum spin models) of strongly correlated electrons in a comprehensive and concise manner. It incorporates important results related to magnetic and hybridization impurities in electron hosts and contains exact original results for disordered ensembles of impurities in interacting systems. These models describe a number of real low-dimensional electron systems that are widely used in nanophysics and microelectronics.An important method of modern theoretical and mathematical physics — the Bethe's Ansatz (BA) — is introduced to readers. This book presents different forms of the BA for periodic and open quantum chains. Other forms dealt with are the co-ordinate BA, thermodynamic BA, nested BA, algebraic BA, and thermal BA. The book also contains a compact description of other theoretical methods such as scaling, conformal field theory, Abelian and non-Abelian bosonizations.The book is suitable for use as a textbook by graduate students in non-perturbative methods of low-dimensional quantum many-body theory. It will also be a useful source of reference for qualified physicists, as well as non-experts in low-dimensional physics, as it explores material necessary for further studies in the fields of exactly solvable quantum models and low-dimensional correlated electron systems.
Publisher: World Scientific
ISBN: 1783260475
Category : Science
Languages : en
Pages : 380
Book Description
The book presents exact results for one-dimensional models (including quantum spin models) of strongly correlated electrons in a comprehensive and concise manner. It incorporates important results related to magnetic and hybridization impurities in electron hosts and contains exact original results for disordered ensembles of impurities in interacting systems. These models describe a number of real low-dimensional electron systems that are widely used in nanophysics and microelectronics.An important method of modern theoretical and mathematical physics — the Bethe's Ansatz (BA) — is introduced to readers. This book presents different forms of the BA for periodic and open quantum chains. Other forms dealt with are the co-ordinate BA, thermodynamic BA, nested BA, algebraic BA, and thermal BA. The book also contains a compact description of other theoretical methods such as scaling, conformal field theory, Abelian and non-Abelian bosonizations.The book is suitable for use as a textbook by graduate students in non-perturbative methods of low-dimensional quantum many-body theory. It will also be a useful source of reference for qualified physicists, as well as non-experts in low-dimensional physics, as it explores material necessary for further studies in the fields of exactly solvable quantum models and low-dimensional correlated electron systems.
Advanced Topological Insulators
Author: Huixia Luo
Publisher: John Wiley & Sons
ISBN: 111940732X
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Publisher: John Wiley & Sons
ISBN: 111940732X
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Quantum Information and Computation for Chemistry, Volume 154
Author: Sabre Kais
Publisher: John Wiley & Sons
ISBN: 1118742605
Category : Science
Languages : en
Pages : 522
Book Description
Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.
Publisher: John Wiley & Sons
ISBN: 1118742605
Category : Science
Languages : en
Pages : 522
Book Description
Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.
Topological Phase Transitions And New Developments
Author: Lars Brink
Publisher: World Scientific
ISBN: 9813271353
Category : Science
Languages : en
Pages : 263
Book Description
Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.
Publisher: World Scientific
ISBN: 9813271353
Category : Science
Languages : en
Pages : 263
Book Description
Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.
Dynamical Mean-Field Theory for Strongly Correlated Materials
Author: Volodymyr Turkowski
Publisher: Springer Nature
ISBN: 3030649040
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.
Publisher: Springer Nature
ISBN: 3030649040
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.