Author: Vladimir G. Ivancevic
Publisher: Springer Science & Business Media
ISBN: 9048133505
Category : Computers
Languages : en
Pages : 938
Book Description
Quantum Neural Computation is a graduate–level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain’s nonlinear complexity, in order to perform a super–high–speed and error–free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.
Quantum Neural Computation
Author: Vladimir G. Ivancevic
Publisher: Springer Science & Business Media
ISBN: 9048133505
Category : Computers
Languages : en
Pages : 938
Book Description
Quantum Neural Computation is a graduate–level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain’s nonlinear complexity, in order to perform a super–high–speed and error–free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.
Publisher: Springer Science & Business Media
ISBN: 9048133505
Category : Computers
Languages : en
Pages : 938
Book Description
Quantum Neural Computation is a graduate–level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain’s nonlinear complexity, in order to perform a super–high–speed and error–free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.
Introduction To The Theory Of Neural Computation
Author: John A. Hertz
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 352
Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 352
Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Machine Learning with Quantum Computers
Author: Maria Schuld
Publisher: Springer Nature
ISBN: 3030830985
Category : Science
Languages : en
Pages : 321
Book Description
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
Publisher: Springer Nature
ISBN: 3030830985
Category : Science
Languages : en
Pages : 321
Book Description
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
Quantum Computing for the Brain
Author: Melanie Swan
Publisher: Wspc (Europe)
ISBN: 9781800610613
Category : Computers
Languages : en
Pages : 512
Book Description
Quantum Computing for the Brain argues that the brain is the killer application for quantum computing. No other system is as complex, as multidimensional in time and space, as dynamic, as less well-understood, as of peak interest, and as in need of three-dimensional modeling as it functions in real-life, as the brain. Quantum computing has emerged as a platform suited to contemporary data processing needs, surpassing classical computing and supercomputing. This book shows how quantum computing's increased capacity to model classical data with quantum states and the ability to run more complex permutations of problems can be employed in neuroscience applications such as neural signaling and synaptic integration. State-of-the-art methods are discussed such as quantum machine learning, tensor networks, Born machines, quantum kernel learning, wavelet transforms, Rydberg atom arrays, ion traps, boson sampling, graph-theoretic models, quantum optical machine learning, neuromorphic architectures, spiking neural networks, quantum teleportation, and quantum walks. Quantum Computing for the Brain is a comprehensive one-stop resource for an improved understanding of the converging research frontiers of foundational physics, information theory, and neuroscience in the context of quantum computing.
Publisher: Wspc (Europe)
ISBN: 9781800610613
Category : Computers
Languages : en
Pages : 512
Book Description
Quantum Computing for the Brain argues that the brain is the killer application for quantum computing. No other system is as complex, as multidimensional in time and space, as dynamic, as less well-understood, as of peak interest, and as in need of three-dimensional modeling as it functions in real-life, as the brain. Quantum computing has emerged as a platform suited to contemporary data processing needs, surpassing classical computing and supercomputing. This book shows how quantum computing's increased capacity to model classical data with quantum states and the ability to run more complex permutations of problems can be employed in neuroscience applications such as neural signaling and synaptic integration. State-of-the-art methods are discussed such as quantum machine learning, tensor networks, Born machines, quantum kernel learning, wavelet transforms, Rydberg atom arrays, ion traps, boson sampling, graph-theoretic models, quantum optical machine learning, neuromorphic architectures, spiking neural networks, quantum teleportation, and quantum walks. Quantum Computing for the Brain is a comprehensive one-stop resource for an improved understanding of the converging research frontiers of foundational physics, information theory, and neuroscience in the context of quantum computing.
Supervised Learning with Quantum Computers
Author: Maria Schuld
Publisher: Springer
ISBN: 3319964240
Category : Science
Languages : en
Pages : 293
Book Description
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
Publisher: Springer
ISBN: 3319964240
Category : Science
Languages : en
Pages : 293
Book Description
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
An Introduction to Neural Computing
Author: Igor Aleksander
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 276
Book Description
The second edition of this text has been updated and includes material on new developments including neurocontrol, pattern analysis and dynamic systems. The book should be useful for undergraduate students of neural networks.
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 276
Book Description
The second edition of this text has been updated and includes material on new developments including neurocontrol, pattern analysis and dynamic systems. The book should be useful for undergraduate students of neural networks.
Quantum Computation and Quantum Information Theory
Author: Chiara Macchiavello
Publisher: World Scientific
ISBN: 9810241178
Category : Science
Languages : en
Pages : 531
Book Description
Quantum Entanglement Manipulation - Quantum Algorithms - Quantum Complexity - Quantum Error Correction - Quantum Channels - Entanglement Purification and Long-Distance Quantum Communication - Quantum Key Distribution - Cavity Quantum Electrodynamics - Quantum Computation with Ion Traps - Josephson Junctions and Quantum Computation - Quantum Computing in Optical Lattices - Quantum Computation and Quantum Communication with Electrons - NMR Quantum Computing.
Publisher: World Scientific
ISBN: 9810241178
Category : Science
Languages : en
Pages : 531
Book Description
Quantum Entanglement Manipulation - Quantum Algorithms - Quantum Complexity - Quantum Error Correction - Quantum Channels - Entanglement Purification and Long-Distance Quantum Communication - Quantum Key Distribution - Cavity Quantum Electrodynamics - Quantum Computation with Ion Traps - Josephson Junctions and Quantum Computation - Quantum Computing in Optical Lattices - Quantum Computation and Quantum Communication with Electrons - NMR Quantum Computing.
Quantum Machine Learning
Author: Peter Wittek
Publisher: Academic Press
ISBN: 0128010991
Category : Science
Languages : en
Pages : 176
Book Description
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research
Publisher: Academic Press
ISBN: 0128010991
Category : Science
Languages : en
Pages : 176
Book Description
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research
Future Directions for Intelligent Systems and Information Sciences
Author: Nikola Kasabov
Publisher: Physica
ISBN: 9783662003916
Category : Computers
Languages : en
Pages : 412
Book Description
This edited volume comprises invited chapters that cover five areas of the current and the future development of intelligent systems and information sciences. Half of the chapters were presented as invited talks at the Workshop "Future Directions for Intelligent Systems and Information Sciences" held in Dunedin, New Zealand, 22-23 November 1999 after the International Conference on Neuro-Information Processing (lCONIPI ANZIISI ANNES '99) held in Perth, Australia. In order to make this volume useful for researchers and academics in the broad area of information sciences I invited prominent researchers to submit materials and present their view about future paradigms, future trends and directions. Part I contains chapters on adaptive, evolving, learning systems. These are systems that learn in a life-long, on-line mode and in a changing environment. The first chapter, written by the editor, presents briefly the paradigm of Evolving Connectionist Systems (ECOS) and some of their applications. The chapter by Sung-Bae Cho presents the paradigms of artificial life and evolutionary programming in the context of several applications (mobile robots, adaptive agents of the WWW). The following three chapters written by R.Duro, J.Santos and J.A.Becerra (chapter 3), GCoghill . (chapter 4), Y.Maeda (chapter 5) introduce new techniques for building adaptive, learning robots.
Publisher: Physica
ISBN: 9783662003916
Category : Computers
Languages : en
Pages : 412
Book Description
This edited volume comprises invited chapters that cover five areas of the current and the future development of intelligent systems and information sciences. Half of the chapters were presented as invited talks at the Workshop "Future Directions for Intelligent Systems and Information Sciences" held in Dunedin, New Zealand, 22-23 November 1999 after the International Conference on Neuro-Information Processing (lCONIPI ANZIISI ANNES '99) held in Perth, Australia. In order to make this volume useful for researchers and academics in the broad area of information sciences I invited prominent researchers to submit materials and present their view about future paradigms, future trends and directions. Part I contains chapters on adaptive, evolving, learning systems. These are systems that learn in a life-long, on-line mode and in a changing environment. The first chapter, written by the editor, presents briefly the paradigm of Evolving Connectionist Systems (ECOS) and some of their applications. The chapter by Sung-Bae Cho presents the paradigms of artificial life and evolutionary programming in the context of several applications (mobile robots, adaptive agents of the WWW). The following three chapters written by R.Duro, J.Santos and J.A.Becerra (chapter 3), GCoghill . (chapter 4), Y.Maeda (chapter 5) introduce new techniques for building adaptive, learning robots.
Hands-On Quantum Machine Learning With Python
Author: Frank Zickert
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 440
Book Description
You're interested in quantum computing and machine learning. But you don't know how to get started? Let me help! Whether you just get started with quantum computing and machine learning or you're already a senior machine learning engineer, Hands-On Quantum Machine Learning With Python is your comprehensive guide to get started with Quantum Machine Learning - the use of quantum computing for the computation of machine learning algorithms. Quantum computing promises to solve problems intractable with current computing technologies. But is it fundamentally different and asks us to change the way we think. Hands-On Quantum Machine Learning With Python strives to be the perfect balance between theory taught in a textbook and the actual hands-on knowledge you'll need to implement real-world solutions. Inside this book, you will learn the basics of quantum computing and machine learning in a practical and applied manner.
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 440
Book Description
You're interested in quantum computing and machine learning. But you don't know how to get started? Let me help! Whether you just get started with quantum computing and machine learning or you're already a senior machine learning engineer, Hands-On Quantum Machine Learning With Python is your comprehensive guide to get started with Quantum Machine Learning - the use of quantum computing for the computation of machine learning algorithms. Quantum computing promises to solve problems intractable with current computing technologies. But is it fundamentally different and asks us to change the way we think. Hands-On Quantum Machine Learning With Python strives to be the perfect balance between theory taught in a textbook and the actual hands-on knowledge you'll need to implement real-world solutions. Inside this book, you will learn the basics of quantum computing and machine learning in a practical and applied manner.