Quantum control of molecular processes in the K2 molecule PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum control of molecular processes in the K2 molecule PDF full book. Access full book title Quantum control of molecular processes in the K2 molecule by Dana Mastrovito. Download full books in PDF and EPUB format.

Quantum control of molecular processes in the K2 molecule

Quantum control of molecular processes in the K2 molecule PDF Author: Dana Mastrovito
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Book Description


Quantum control of molecular processes in the K2 molecule

Quantum control of molecular processes in the K2 molecule PDF Author: Dana Mastrovito
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Book Description


Principles of the Quantum Control of Molecular Processes

Principles of the Quantum Control of Molecular Processes PDF Author: Moshe Shapiro
Publisher:
ISBN: 9780471241843
Category : Science
Languages : en
Pages : 354

Book Description
Principles and Applications of Quantum Contro Over the past fifteen years, significant developments have been made in utilizing quantum attributes of light and matter to assume unprecedented control over the dynamics of atomic and molecular systems. This growth reflects a confluence of factors including the maturation of quantum mechanics as a tool for chemistry and physics, the development of new laser devices increasing our ability to manipulate light, and the recognition that coherent laser light can be used to imprint information on atoms and molecules for practical purposes. Written by two of the world’s leading researchers in the field, Principles of the Quantum Control of Molecular Processes offers a systematic introduction to the fundamental principles of coherent control, and to the physics and chemistry necessary to master it Designed as both a resource for self-study and as a graduate textbook, this survey of the subject provides a step-by-step discussion of light-matter interactions along with coverage of such essential topics as: Molecular dynamics and control LI>The dynamics of photodissociation LI>Bimolecular collision processes LI>The control of chirality and asymmetric synthesis LI>Application of control using moderate and strong fields LI>Tuning the system and laser parameters to achieve optimal control LI>Decoherence and methods for countering it P>Both authoritative and comprehensive, this first in-depth treatment of coherent control is destined to become the standard reference in an increasingly influential field PAUL W. BRUMER, PhD, is University Professor–Theoretical Chemical Physics and holds the Roel Buck Chair in Chemical Physics at the University of Toronto. He received his BSc. from Brooklyn College and his PhD from Harvard University. MOSHE SHAPIRO, PhD, is the Jacques Mimran Professor of Chemical Physics at the Weizmann Institute of Science, Rehovot, Israel, and a Professor of Chemistry and Physics at the University of British Columbia. He received his BSc, MSc, and PhD from the Hebrew University of Jerusalem The authors are among the cofounders of the field of coherent control. They have published extensively on this and related subjects in chemical physics, and have received numerous awards and worldwide recognition for their research contributions.

Quantum Control of Molecular Processes

Quantum Control of Molecular Processes PDF Author: Moshe Shapiro
Publisher: John Wiley & Sons
ISBN: 3527639721
Category : Science
Languages : en
Pages : 562

Book Description
Written by two of the world's leading researchers in the field, this is a systematic introduction to the fundamental principles of coherent control, and to the underlying physics and chemistry. This fully updated second edition is enhanced by 80% and covers the latest techniques and applications, including nanostructures, attosecond processes, optical control of chirality, and weak and strong field quantum control. Developments and challenges in decoherence-sensitive condensed phase control as well as in bimolecular control are clearly described. Indispensable for atomic, molecular and chemical physicists, physical chemists, materials scientists and nanotechnologists.

Ultrafast Quantum Control of Atoms and Molecules : a Density Matrix Approach

Ultrafast Quantum Control of Atoms and Molecules : a Density Matrix Approach PDF Author: Iduabo John Afa
Publisher:
ISBN:
Category :
Languages : en
Pages : 158

Book Description
Control is important for transferring theoretical scientific knowledge into practical technology for applications in numerous fields. This is why coherent control study is significant on every timescale to have a complete understanding of dynamic processes that occur on the electron, atomic and molecular levels. As a result, numerous schemes have been proposed to carry out effective quantum control of diverse systems and study the dynamics of these systems based on their natural timescales from the picoseconds (10-12 s), femtosecond (10-15 s) to attosecond (10-18 s) regimes. The goals of these various studies depend on the desired application, for instance in Photochemistry a long standing objective is achieving selective population transfer from an initial state to a desired target state with little or no diminution in the energy transferred. In quantum computation, a central issue is the excitation of unoccupied Rydberg states with numerous proposals for its use in the design and implementation of robust fast quantum gates. Also, since the advent of the generation of attosecond XUV pulses, doors have been opened for achieving control of atomic-scale electron dynamics and observing them in real-time. This thesis explores the modelling of dynamical light-matter interaction processes, like effective population inversion and generation of vibrational coherences in atoms and molecules, on their fundamental timescales using the density matrix (DM) theory under and beyond the rotating wave approximation (RWA). The thesis begins by introducing the concept of coherent control of simple quantum systems based on the DM formalism and expands the application to a more complex Oxazine system. Multiphoton p-pulse scheme is demonstrated for the control of population transfer in multilevel systems, for example with a trichromatic p-pulse having a set of areas v3 p, 2p and v3 p, complete population transfer in a four level system can be achieved. The aforementioned scheme is used to achieve effective control of low-lying Rydberg states in rubidium atoms, demonstrating how the effective control can be crucially affected by numerous physical processes. One main advantage of the density matrix approach over other theoretical approaches is that it allows the possibility of easily computing relaxation terms and other physical parameters critical to successful coherent control. The DM formalism is shown to be successful in properly describing the enhancement effects in atoms and complex molecular systems. It is robust in coherent control and quantum control spectroscopy (QCS) schemes and is extendable to numerous systems and geometric configurations. In the last part of the thesis, experiments on laser dressing processes in attosecond transient absorption spectroscopy are compared to numerical simulations using the DM analysis beyond the RWA. The research in this thesis opens a pathway to numerous studies using the DM formalism for applications in diverse fields of femtochemistry, attophysics, high precision spectroscopy and quantum information processing.

Molecular Spectroscopy and Quantum Dynamics

Molecular Spectroscopy and Quantum Dynamics PDF Author: Roberto Marquardt
Publisher: Elsevier
ISBN: 0128172355
Category : Science
Languages : en
Pages : 376

Book Description
Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion Presents the most recent developments in the detection and interpretation of ultra-fast phenomena Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure

Femtosecond Real-Time Spectroscopy of Small Molecules and Clusters

Femtosecond Real-Time Spectroscopy of Small Molecules and Clusters PDF Author: Elmar Schreiber
Publisher: Springer
ISBN: 9783540639008
Category : Technology & Engineering
Languages : en
Pages : 236

Book Description
This book gives a detailed overview on this new and exciting field at the boundary of physics and chemistry. Laser-induced ultrafast molecuar dynamics is presented for many textbook-like examples of model molecules and clusters. Experimental results on phenomena like wave packet propagation, ultrafast photodissociation and femtosecond structural redistribution are presented and described theoretically.

Cold Chemistry

Cold Chemistry PDF Author: Olivier Dulieu
Publisher: Royal Society of Chemistry
ISBN: 1782625976
Category : Science
Languages : en
Pages : 692

Book Description
Explores the theoretical and experimental aspects of cold and ultracold molecular collisions, for students and researchers in theoretical chemistry and chemical reaction/molecular dynamics.

Molecular Quantum Dynamics

Molecular Quantum Dynamics PDF Author: Fabien Gatti
Publisher: Springer Science & Business Media
ISBN: 3642452906
Category : Science
Languages : en
Pages : 281

Book Description
This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.

Ultrafast Phenomena XIV

Ultrafast Phenomena XIV PDF Author: Takayoshi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 9783540241102
Category : Science
Languages : en
Pages : 954

Book Description
Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

Cold Molecules

Cold Molecules PDF Author: Roman Krems
Publisher: CRC Press
ISBN: 1420059041
Category : Science
Languages : en
Pages : 756

Book Description
The First Book on Ultracold MoleculesCold molecules offer intriguing properties on which new operational principles can be based (e.g., quantum computing) or that may allow researchers to study a qualitatively new behavior of matter (e.g., Bose-Einstein condensates structured by the electric dipole interaction). This interdisciplinary book discusse