Quantum Confined Semiconductor Nanostructures: Volume 737 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Confined Semiconductor Nanostructures: Volume 737 PDF full book. Access full book title Quantum Confined Semiconductor Nanostructures: Volume 737 by Victor I. Klimov. Download full books in PDF and EPUB format.

Quantum Confined Semiconductor Nanostructures: Volume 737

Quantum Confined Semiconductor Nanostructures: Volume 737 PDF Author: Victor I. Klimov
Publisher: Cambridge University Press
ISBN:
Category : Science
Languages : en
Pages : 872

Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. This book brings together a single comprehensive overview of recent progress and future directions in nanoscale semiconductor research. Fields ranging from materials science to physics, chemistry, electrical and microelectronic engineering, circuit design, and more, are represented.

Quantum Confined Semiconductor Nanostructures: Volume 737

Quantum Confined Semiconductor Nanostructures: Volume 737 PDF Author: Victor I. Klimov
Publisher: Cambridge University Press
ISBN:
Category : Science
Languages : en
Pages : 872

Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. This book brings together a single comprehensive overview of recent progress and future directions in nanoscale semiconductor research. Fields ranging from materials science to physics, chemistry, electrical and microelectronic engineering, circuit design, and more, are represented.

Semiconductor Nanowires I: Growth and Theory

Semiconductor Nanowires I: Growth and Theory PDF Author:
Publisher: Academic Press
ISBN: 0128030445
Category : Technology & Engineering
Languages : en
Pages : 326

Book Description
Semiconductor Nanowires: Part A, Number 93 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires. Contains comments from leading contributors in the field semiconductor nanowires Provides reviews of the most important recent literature Presents a broad view, including an examination of semiconductor nanowires Comprises up to date advancements in the technological development of nanowire devices and systems, and is comprehensive enough to be used as a reference book on nanowires as well as a graduate student text book

Wide Band Gap Semiconductor Nanowires 1

Wide Band Gap Semiconductor Nanowires 1 PDF Author: Vincent Consonni
Publisher: John Wiley & Sons
ISBN: 1118984307
Category : Science
Languages : en
Pages : 467

Book Description
GaN and ZnO nanowires can by grown using a wide variety of methods from physical vapor deposition to wet chemistry for optical devices. This book starts by presenting the similarities and differences between GaN and ZnO materials, as well as the assets and current limitations of nanowires for their use in optical devices, including feasibility and perspectives. It then focuses on the nucleation and growth mechanisms of ZnO and GaN nanowires, grown by various chemical and physical methods. Finally, it describes the formation of nanowire heterostructures applied to optical devices.

Physics and Applications of CVD Diamond

Physics and Applications of CVD Diamond PDF Author: Satoshi Koizumi
Publisher: John Wiley & Sons
ISBN: 3527623183
Category : Technology & Engineering
Languages : en
Pages : 374

Book Description
Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs. Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is essential reading for everyone working in environments that involve conventional electronics, biotechnology, quantum computing, quantum cryptography, superconductivity and light emission from highly excited excitonic systems.

Springer Handbook of Nanotechnology

Springer Handbook of Nanotechnology PDF Author: Bharat Bhushan
Publisher: Springer
ISBN: 3662543575
Category : Technology & Engineering
Languages : en
Pages : 1500

Book Description
This comprehensive handbook has become the definitive reference work in the field of nanoscience and nanotechnology, and this 4th edition incorporates a number of recent new developments. It integrates nanofabrication, nanomaterials, nanodevices, nanomechanics, nanotribology, materials science, and reliability engineering knowledge in just one volume. Furthermore, it discusses various nanostructures; micro/nanofabrication; micro/nanodevices and biomicro/nanodevices, as well as scanning probe microscopy; nanotribology and nanomechanics; molecularly thick films; industrial applications and nanodevice reliability; societal, environmental, health and safety issues; and nanotechnology education. In this new edition, written by an international team of over 140 distinguished experts and put together by an experienced editor with a comprehensive understanding of the field, almost all the chapters are either new or substantially revised and expanded, with new topics of interest added. It is an essential resource for anyone working in the rapidly evolving field of key technology, including mechanical and electrical engineers, materials scientists, physicists, and chemists.

Lattice Engineering

Lattice Engineering PDF Author: Shumin Wang
Publisher: CRC Press
ISBN: 9814364258
Category : Science
Languages : en
Pages : 404

Book Description
This book contains comprehensive reviews of different technologies to harness lattice mismatch in semiconductor heterostructures and their applications in electronic and optoelectronic devices. While the book is a bit focused on metamorphic epitaxial growth, it also includes other methods like compliant substrate, selective area growth, wafer bondi

New Applications for Wide-Bandgap Semiconductors: Volume 764

New Applications for Wide-Bandgap Semiconductors: Volume 764 PDF Author: Materials Research Society. Meeting
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
Wide-bandgap semiconductors such as SiC, GaN and related alloys, BN and related alloys, ZnGeSiN2, ZnO, and others continue to find new applications in solid-state lighting, sensors, filters, high-power electronics, biological detection, and spintronics. Improved bulk and epitaxial growth, processing, device design, and understanding of the physics of transport in heterostructures are all necessary for realization of these new technologies. The papers in this book span a range of subjects from material growth and characterization to the processing and application of devices in the electronic, as well as the optoelectronic, fields. Topics include: special invited papers; growth, processing and devices; novel applications for wide-bandgap semiconductors; oxides, heterostructures and devices; processing and devices and emerging areas.

Semiconductor Nanocrystals

Semiconductor Nanocrystals PDF Author: Alexander L. Efros
Publisher: Springer Science & Business Media
ISBN: 1475736770
Category : Technology & Engineering
Languages : en
Pages : 277

Book Description
A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.

Energetics and Dynamics in Quantum Confined Semiconductor Nanostructures

Energetics and Dynamics in Quantum Confined Semiconductor Nanostructures PDF Author: Jessica Hoy
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 164

Book Description
The ability to tune the band-gap energies of semiconductor quantum dots, nanoplatelets, and quantum wires, their significant absorption cross sections, and high photoluminescence quantum yields make these nanostructures promising moieties for use in optoelectronic devices, solar concentrators, chemical sensors, and biological labels. The variable dynamics of the electron-hole pairs that occur within semiconductor nanostructures, however, can complicate the utility of these devices. The variability of the dynamics is born from the different paths accessible for the charge carriers to undergo. In this work, three pathways are proposed to be of primary consequence, namely, electronic intraband relaxation, coupling to surface-mediated processes, and tunneling to the external environment. The relative dominance of these paths will vary from sample to sample. More importantly, within a sample, the contributions of the available pathways are found to change with changes in excitation energy. To this end, I investigated the dependence of the ensemble photoluminescence (PL) quantum yields (QYs) on excitation energy for numerous semiconductor nanoparticles with quantum confinement in varying dimensions. A strong dependence of the PL QY on excitation energy is observed in quantum dots (QDs), nanoplatelets (NPLs), and quantum wires (QWs). The highest PL QYs are within the first 300 meV above the band edge, and there is a severe drop in the PL QY towards the highest excitation energies investigated, ~3.1 eV. These high PL QYs are 91 % for CdSe/ZnS QDs, 24 % in CdSe NPLs, which are dispersed in toluene and 25 % in CdTe/CdS QWs, which is dispersed in TOP. These values drop to 12, 8, and 8 % by 3.1 eV, respectively. There are some recognized trends to the shape of this dependency. Local minima in PL QY values occur when intraband relaxation is restricted and ligand or surface mediated transitions are available. These variations in PL QY are reduced when a shell is added to produce a type-I heterostructure. This trend is realized in both QDs and QWs. However, QWs are more weakly confined systems with large surface areas. Their saw-like densities of states that result from the long, unconfined dimension of the QWs and increased valence state mixing yields a higher density of states which leads to a smoother PL QY dependence of the excitation energy. The minimal undulations in the PL QYs that do still exist in these QWs, are further minimized with the addition of a shell to create a type-I heterostructure. Conversely, the pseudo-2D confinement and atomic flatness of NPLs results in narrow, discrete bands of states separated by large energies, ~ 200 meV. This electronic structure restricts intraband relaxation and promotes coupling to other pathways that sponsor non-radiative recombination even more efficiently than QDs. In all samples, exciting with high energies severely diminishes PL QYs as these energies generate highly excited charge-carriers that can access solvent/environmental pathways.

CMOS Front-End Materials and Process Technology: Volume 765

CMOS Front-End Materials and Process Technology: Volume 765 PDF Author: Materials Research Society. Meeting
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 336

Book Description
In the future, because fundamental materials and process limits are being approached, continued transistor scaling will not be as straightforward. Future complementary metal-oxide semiconductor (MOS) transistors will require high-permittivity (high-k) gate dielectrics and metal gate electrodes, as well as low-resistance ultrashallow junctions, in order to meet the stringent specifications of the International Technology Roadmap for Semiconductors. Techniques to improve transconductance and drive current may also be required. Process integration issues must be solved, and reliability must be assured, before any new material or processing technique can be used in IC manufacture. A further complication is that the key challenges will differ according to application. This book reports research results from industry, government labs and academia covering a wide scope of front-end process issues for future CMOS technologies. Topics include: advanced materials and structures; high-k dielectrics; advanced gate stack materials; heterogeneous integration and strained Si technologies; ultrashallow junction technology; strained Si and source/drain technology; and laser annealing and silicide processes.