Quantum Cryptography and the Future of Cyber Security PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Cryptography and the Future of Cyber Security PDF full book. Access full book title Quantum Cryptography and the Future of Cyber Security by Chaubey, Nirbhay Kumar. Download full books in PDF and EPUB format.

Quantum Cryptography and the Future of Cyber Security

Quantum Cryptography and the Future of Cyber Security PDF Author: Chaubey, Nirbhay Kumar
Publisher: IGI Global
ISBN: 1799822559
Category : Computers
Languages : en
Pages : 343

Book Description
The shortcomings of modern cryptography and its weaknesses against computers that are becoming more powerful necessitate serious consideration of more robust security options. Quantum cryptography is sound, and its practical implementations are becoming more mature. Many applications can use quantum cryptography as a backbone, including key distribution, secure direct communications, large prime factorization, e-commerce, e-governance, quantum internet, and more. For this reason, quantum cryptography is gaining interest and importance among computer and security professionals. Quantum Cryptography and the Future of Cyber Security is an essential scholarly resource that provides the latest research and advancements in cryptography and cyber security through quantum applications. Highlighting a wide range of topics such as e-commerce, machine learning, and privacy, this book is ideal for security analysts, systems engineers, software security engineers, data scientists, vulnerability analysts, professionals, academicians, researchers, security professionals, policymakers, and students.

Quantum Cryptography and the Future of Cyber Security

Quantum Cryptography and the Future of Cyber Security PDF Author: Chaubey, Nirbhay Kumar
Publisher: IGI Global
ISBN: 1799822559
Category : Computers
Languages : en
Pages : 343

Book Description
The shortcomings of modern cryptography and its weaknesses against computers that are becoming more powerful necessitate serious consideration of more robust security options. Quantum cryptography is sound, and its practical implementations are becoming more mature. Many applications can use quantum cryptography as a backbone, including key distribution, secure direct communications, large prime factorization, e-commerce, e-governance, quantum internet, and more. For this reason, quantum cryptography is gaining interest and importance among computer and security professionals. Quantum Cryptography and the Future of Cyber Security is an essential scholarly resource that provides the latest research and advancements in cryptography and cyber security through quantum applications. Highlighting a wide range of topics such as e-commerce, machine learning, and privacy, this book is ideal for security analysts, systems engineers, software security engineers, data scientists, vulnerability analysts, professionals, academicians, researchers, security professionals, policymakers, and students.

Quantum Computing

Quantum Computing PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030947969X
Category : Computers
Languages : en
Pages : 273

Book Description
Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Limitations and Future Applications of Quantum Cryptography

Limitations and Future Applications of Quantum Cryptography PDF Author: Kumar, Neeraj
Publisher: IGI Global
ISBN: 1799866793
Category : Computers
Languages : en
Pages : 305

Book Description
The concept of quantum computing is based on two fundamental principles of quantum mechanics: superposition and entanglement. Instead of using bits, qubits are used in quantum computing, which is a key indicator in the high level of safety and security this type of cryptography ensures. If interfered with or eavesdropped in, qubits will delete or refuse to send, which keeps the information safe. This is vital in the current era where sensitive and important personal information can be digitally shared online. In computer networks, a large amount of data is transferred worldwide daily, including anything from military plans to a country’s sensitive information, and data breaches can be disastrous. This is where quantum cryptography comes into play. By not being dependent on computational power, it can easily replace classical cryptography. Limitations and Future Applications of Quantum Cryptography is a critical reference that provides knowledge on the basics of IoT infrastructure using quantum cryptography, the differences between classical and quantum cryptography, and the future aspects and developments in this field. The chapters cover themes that span from the usage of quantum cryptography in healthcare, to forensics, and more. While highlighting topics such as 5G networks, image processing, algorithms, and quantum machine learning, this book is ideally intended for security professionals, IoT developers, computer scientists, practitioners, researchers, academicians, and students interested in the most recent research on quantum computing.

Quantum Computing and Cryptography in Future Computers

Quantum Computing and Cryptography in Future Computers PDF Author: Sihare, Shyam R.
Publisher: IGI Global
ISBN: 1799895246
Category : Computers
Languages : en
Pages : 386

Book Description
In recent decades, computing has undergone rapid evolutions and groundbreaking developments that affect almost every sector across the world. The developments of quantum computing and quantum cryptography are similarly revolutionizing computing and security with lasting impacts and implications. Quantum computing and quantum cryptography will pave the path for new opportunities for the future of computing. Quantum Computing and Cryptography in Future Computers discusses quantum computing and quantum cryptography principles and their impact on future computers. It includes coverage of the role of quantum computing to overcome the issues of current security methods. It also discusses the application of quantum computing in various areas like security, blockchain, and more. Covering topics such as attack detection, machine learning, and quantum key distribution, this premier reference source is an ideal resource for developers, engineers, practitioners, security experts, students and educators of higher education, librarians, researchers, and academicians.

The Hash Function BLAKE

The Hash Function BLAKE PDF Author: Jean-Philippe Aumasson
Publisher: Springer
ISBN: 3662447576
Category : Computers
Languages : en
Pages : 237

Book Description
This is a comprehensive description of the cryptographic hash function BLAKE, one of the five final contenders in the NIST SHA3 competition, and of BLAKE2, an improved version popular among developers. It describes how BLAKE was designed and why BLAKE2 was developed, and it offers guidelines on implementing and using BLAKE, with a focus on software implementation. In the first two chapters, the authors offer a short introduction to cryptographic hashing, the SHA3 competition and BLAKE. They review applications of cryptographic hashing, they describe some basic notions such as security definitions and state-of-the-art collision search methods and they present SHA1, SHA2 and the SHA3 finalists. In the chapters that follow, the authors give a complete description of the four instances BLAKE-256, BLAKE-512, BLAKE-224 and BLAKE-384; they describe applications of BLAKE, including simple hashing with or without a salt and HMAC and PBKDF2 constructions; they review implementation techniques, from portable C and Python to AVR assembly and vectorized code using SIMD CPU instructions; they describe BLAKE’s properties with respect to hardware design for implementation in ASICs or FPGAs; they explain BLAKE's design rationale in detail, from NIST’s requirements to the choice of internal parameters; they summarize the known security properties of BLAKE and describe the best attacks on reduced or modified variants; and they present BLAKE2, the successor of BLAKE, starting with motivations and also covering its performance and security aspects. The book concludes with detailed test vectors, a reference portable C implementation of BLAKE, and a list of third-party software implementations of BLAKE and BLAKE2. The book is oriented towards practice – engineering and craftsmanship – rather than theory. It is suitable for developers, engineers and security professionals engaged with BLAKE and cryptographic hashing in general and for applied cryptography researchers and students who need a consolidated reference and a detailed description of the design process, or guidelines on how to design a cryptographic algorithm.

Cryptography Apocalypse

Cryptography Apocalypse PDF Author: Roger A. Grimes
Publisher: John Wiley & Sons
ISBN: 1119618193
Category : Computers
Languages : en
Pages : 272

Book Description
Will your organization be protected the day a quantum computer breaks encryption on the internet? Computer encryption is vital for protecting users, data, and infrastructure in the digital age. Using traditional computing, even common desktop encryption could take decades for specialized ‘crackers’ to break and government and infrastructure-grade encryption would take billions of times longer. In light of these facts, it may seem that today’s computer cryptography is a rock-solid way to safeguard everything from online passwords to the backbone of the entire internet. Unfortunately, many current cryptographic methods will soon be obsolete. In 2016, the National Institute of Standards and Technology (NIST) predicted that quantum computers will soon be able to break the most popular forms of public key cryptography. The encryption technologies we rely on every day—HTTPS, TLS, WiFi protection, VPNs, cryptocurrencies, PKI, digital certificates, smartcards, and most two-factor authentication—will be virtually useless. . . unless you prepare. Cryptography Apocalypse is a crucial resource for every IT and InfoSec professional for preparing for the coming quantum-computing revolution. Post-quantum crypto algorithms are already a reality, but implementation will take significant time and computing power. This practical guide helps IT leaders and implementers make the appropriate decisions today to meet the challenges of tomorrow. This important book: Gives a simple quantum mechanics primer Explains how quantum computing will break current cryptography Offers practical advice for preparing for a post-quantum world Presents the latest information on new cryptographic methods Describes the appropriate steps leaders must take to implement existing solutions to guard against quantum-computer security threats Cryptography Apocalypse: Preparing for the Day When Quantum Computing Breaks Today's Crypto is a must-have guide for anyone in the InfoSec world who needs to know if their security is ready for the day crypto break and how to fix it.

Quantum Computing for the Quantum Curious

Quantum Computing for the Quantum Curious PDF Author: Ciaran Hughes
Publisher: Springer Nature
ISBN: 3030616010
Category : Science
Languages : en
Pages : 159

Book Description
This open access book makes quantum computing more accessible than ever before. A fast-growing field at the intersection of physics and computer science, quantum computing promises to have revolutionary capabilities far surpassing “classical” computation. Getting a grip on the science behind the hype can be tough: at its heart lies quantum mechanics, whose enigmatic concepts can be imposing for the novice. This classroom-tested textbook uses simple language, minimal math, and plenty of examples to explain the three key principles behind quantum computers: superposition, quantum measurement, and entanglement. It then goes on to explain how this quantum world opens up a whole new paradigm of computing. The book bridges the gap between popular science articles and advanced textbooks by making key ideas accessible with just high school physics as a prerequisite. Each unit is broken down into sections labelled by difficulty level, allowing the course to be tailored to the student’s experience of math and abstract reasoning. Problem sets and simulation-based labs of various levels reinforce the concepts described in the text and give the reader hands-on experience running quantum programs. This book can thus be used at the high school level after the AP or IB exams, in an extracurricular club, or as an independent project resource to give students a taste of what quantum computing is really about. At the college level, it can be used as a supplementary text to enhance a variety of courses in science and computing, or as a self-study guide for students who want to get ahead. Additionally, readers in business, finance, or industry will find it a quick and useful primer on the science behind computing’s future.

Quantum Computing

Quantum Computing PDF Author: Nihal Mehta P. D.
Publisher:
ISBN: 9781680507201
Category : Computers
Languages : en
Pages : 582

Book Description
You've heard that quantum computing is going to change the world. Now you can check it out for yourself. Learn how quantum computing works, and write programs that run on the IBM Q quantum computer, one of the world's first functioning quantum computers. Learn a simple way to apply quantum mechanics to computer programming. Create algorithms to solve intractable problems for classical computers, and discover how to explore the entire problem space at once to determine the optimal solution. Get your hands on the future of computing today. Quantum computing overhauls computer science. Problems such as designing life-saving drugs and super-large logistics problems that have been difficult or impossible for classical computers to handle can now be solved in moments. Quantum computing makes it possible to explore all possible solutions simultaneously and determine those that work, instead of iterating through each possibility sequentially. Work with quantum computers directly, instead of talking about them theoretically. Work with qubits, the fundamental elements of quantum computing. Discover what makes them different from classical bits. Model complex problems with logic gates specific to quantum computing. Learn how quantum mechanics offers ways to write programs that explore all solutions simultaneously. Create quantum circuits to solve problems that classical computers struggle with. Dive into quantum optimization and cryptography. Use the IBM Q quantum computer to both simulate quantum effects, and actually run your programs on a real quantum machine. Get a head start on the technology that will drive computer science into the future. What You Need: Access to the IBM quantum computer, via any internet connection

Post-Quantum Cryptography

Post-Quantum Cryptography PDF Author: Daniel J. Bernstein
Publisher: Springer Science & Business Media
ISBN: 3540887024
Category : Mathematics
Languages : en
Pages : 246

Book Description
Quantum computers will break today's most popular public-key cryptographic systems, including RSA, DSA, and ECDSA. This book introduces the reader to the next generation of cryptographic algorithms, the systems that resist quantum-computer attacks: in particular, post-quantum public-key encryption systems and post-quantum public-key signature systems. Leading experts have joined forces for the first time to explain the state of the art in quantum computing, hash-based cryptography, code-based cryptography, lattice-based cryptography, and multivariate cryptography. Mathematical foundations and implementation issues are included. This book is an essential resource for students and researchers who want to contribute to the field of post-quantum cryptography.

Quantum Computing for Everyone

Quantum Computing for Everyone PDF Author: Chris Bernhardt
Publisher: MIT Press
ISBN: 0262039257
Category : Computers
Languages : en
Pages : 214

Book Description
An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.