Author: Jean Spièce
Publisher: Springer Nature
ISBN: 3030308138
Category : Science
Languages : en
Pages : 164
Book Description
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spièce develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world’s first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.
Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy
Author: Jean Spièce
Publisher: Springer Nature
ISBN: 3030308138
Category : Science
Languages : en
Pages : 164
Book Description
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spièce develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world’s first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.
Publisher: Springer Nature
ISBN: 3030308138
Category : Science
Languages : en
Pages : 164
Book Description
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spièce develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world’s first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.
Nanostructured Thin Films
Author: Maria Benelmekki
Publisher: Elsevier
ISBN: 0081025734
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
Nanostructured Thin Films: Fundamentals and Applications presents an overview of the synthesis and characterization of thin films and their nanocomposites. Both vapor phase and liquid phase approaches are discussed, along with the methods that are sufficiently attractive for large-scale production. Examples of applications in clean energy, sensors, biomedicine, anticorrosion and surface modification are also included. As the applications of thin films in nanomedicine, cell phones, solar cell-powered devices, and in the protection of structural materials continues to grow, this book presents an important research reference for anyone seeking an informed overview on their structure and applications. - Shows how thin films are being used to create more efficient devices in the fields of medicine and energy harvesting - Discusses how to alter the design of nanostructured thin films by vapor phase and liquid phase methods - Explores how modifying the structure of thin films for specific applications enhances their performance
Publisher: Elsevier
ISBN: 0081025734
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
Nanostructured Thin Films: Fundamentals and Applications presents an overview of the synthesis and characterization of thin films and their nanocomposites. Both vapor phase and liquid phase approaches are discussed, along with the methods that are sufficiently attractive for large-scale production. Examples of applications in clean energy, sensors, biomedicine, anticorrosion and surface modification are also included. As the applications of thin films in nanomedicine, cell phones, solar cell-powered devices, and in the protection of structural materials continues to grow, this book presents an important research reference for anyone seeking an informed overview on their structure and applications. - Shows how thin films are being used to create more efficient devices in the fields of medicine and energy harvesting - Discusses how to alter the design of nanostructured thin films by vapor phase and liquid phase methods - Explores how modifying the structure of thin films for specific applications enhances their performance
Coatings and Thin-Film Technologies
Author: Jaime Andres Perez Taborda
Publisher: BoD – Books on Demand
ISBN: 1789848709
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
The field of coatings and thin-film technologies is rapidly advancing to keep up with new uses for semiconductor, optical, tribological, thermoelectric, solar, security, and smart sensing applications, among others. In this sense, thin-film coatings and structures are increasingly sophisticated with more specific properties, new geometries, large areas, the use of heterogeneous materials and flexible and rigid coating substrates to produce thin-film structures with improved performance and properties in response to new challenges that the industry presents. This book aims to provide the reader with a complete overview of the current state of applications and developments in thin-film technology, discussing applications, health and safety in thin films, and presenting reviews and experimental results of recognized experts in the area of coatings and thin-film technologies.
Publisher: BoD – Books on Demand
ISBN: 1789848709
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
The field of coatings and thin-film technologies is rapidly advancing to keep up with new uses for semiconductor, optical, tribological, thermoelectric, solar, security, and smart sensing applications, among others. In this sense, thin-film coatings and structures are increasingly sophisticated with more specific properties, new geometries, large areas, the use of heterogeneous materials and flexible and rigid coating substrates to produce thin-film structures with improved performance and properties in response to new challenges that the industry presents. This book aims to provide the reader with a complete overview of the current state of applications and developments in thin-film technology, discussing applications, health and safety in thin films, and presenting reviews and experimental results of recognized experts in the area of coatings and thin-film technologies.
Nano/Microscale Heat Transfer
Author: Zhuomin M. Zhang
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780
Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780
Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Scanning Probe Microscopy
Author: Sergei V. Kalinin
Publisher: Springer Science & Business Media
ISBN: 0387286683
Category : Technology & Engineering
Languages : en
Pages : 1002
Book Description
This volume will be devoted to the technical aspects of electrical and electromechanical SPM probes and SPM imaging on the limits of resolution, thus providing technical introduction into the field. This volume will also address the fundamental physical phenomena underpinning the imaging mechanism of SPMs.
Publisher: Springer Science & Business Media
ISBN: 0387286683
Category : Technology & Engineering
Languages : en
Pages : 1002
Book Description
This volume will be devoted to the technical aspects of electrical and electromechanical SPM probes and SPM imaging on the limits of resolution, thus providing technical introduction into the field. This volume will also address the fundamental physical phenomena underpinning the imaging mechanism of SPMs.
Nanoscale Energy Transport and Conversion
Author: Gang Chen
Publisher: Oxford University Press
ISBN: 9780199774685
Category : Science
Languages : en
Pages : 570
Book Description
This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.
Publisher: Oxford University Press
ISBN: 9780199774685
Category : Science
Languages : en
Pages : 570
Book Description
This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.
Handbook of Thermal Analysis and Calorimetry
Author:
Publisher: Elsevier
ISBN: 0444640630
Category : Technology & Engineering
Languages : en
Pages : 862
Book Description
Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications, Volume Six, Second Edition, presents the latest in a series that has been well received by the thermal analysis and calorimetry community. This volume covers recent advances in techniques and applications that complement the earlier volumes. There has been tremendous progress in the field in recent years, and this book puts together the most high-impact topics selected for their popularity by new editors Sergey Vyazovkin, Nobuyoshi Koga and Christoph Schick—all editors of Thermochimica Acta. Among the important new techniques covered are biomass conversion; sustainable polymers; polymer nanocompsoties; nonmetallic glasses; phase change materials; propellants and explosives; applications to pharmaceuticals; processes in ceramics, metals, and alloys; ionic liquids; fast-scanning calorimetry, and more. - Features 19 all-new chapters to bring readers up to date on the current status of the field - Provides a broad overview of recent progress in the most popular techniques and applications - Includes chapters authored by a recognized leader in each field and compiled by a new team of editors, each with at least 20 years of experience in the field of thermal analysis and calorimetry - Enables applications across a wide range of modern materials, including polymers, metals, alloys, ceramics, energetics and pharmaceutics - Overviews the current status of the field and summarizes recent progress in the most popular techniques and applications
Publisher: Elsevier
ISBN: 0444640630
Category : Technology & Engineering
Languages : en
Pages : 862
Book Description
Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications, Volume Six, Second Edition, presents the latest in a series that has been well received by the thermal analysis and calorimetry community. This volume covers recent advances in techniques and applications that complement the earlier volumes. There has been tremendous progress in the field in recent years, and this book puts together the most high-impact topics selected for their popularity by new editors Sergey Vyazovkin, Nobuyoshi Koga and Christoph Schick—all editors of Thermochimica Acta. Among the important new techniques covered are biomass conversion; sustainable polymers; polymer nanocompsoties; nonmetallic glasses; phase change materials; propellants and explosives; applications to pharmaceuticals; processes in ceramics, metals, and alloys; ionic liquids; fast-scanning calorimetry, and more. - Features 19 all-new chapters to bring readers up to date on the current status of the field - Provides a broad overview of recent progress in the most popular techniques and applications - Includes chapters authored by a recognized leader in each field and compiled by a new team of editors, each with at least 20 years of experience in the field of thermal analysis and calorimetry - Enables applications across a wide range of modern materials, including polymers, metals, alloys, ceramics, energetics and pharmaceutics - Overviews the current status of the field and summarizes recent progress in the most popular techniques and applications
Fast Scanning Calorimetry
Author: Christoph Schick
Publisher: Springer
ISBN: 3319313290
Category : Technology & Engineering
Languages : en
Pages : 796
Book Description
In the past decades, the scan rate range of calorimeters has been extended tremendously at the high end, from approximately 10 up to 10 000 000 °C/s and more. The combination of various calorimeters and the newly-developed Fast Scanning Calorimeters (FSC) now span 11 orders of magnitude, by which many processes can be mimicked according to the time scale(s) of chemical and physical transitions occurring during cooling, heating and isothermal stays in case heat is exchanged. This not only opens new areas of research on polymers, metals, pharmaceuticals and all kinds of substances with respect to glass transition, crystallization and melting phenomena, it also enables in-depth study of metastability and reorganization of samples on an 1 to 1000 ng scale. In addition, FSC will become a crucial tool for understanding and optimization of processing methods at high speeds like injection molding. The book resembles the state-of-the art in Thermal Analysis & Calorimetry and is an excellent starting point for both experts and newcomers in the field.
Publisher: Springer
ISBN: 3319313290
Category : Technology & Engineering
Languages : en
Pages : 796
Book Description
In the past decades, the scan rate range of calorimeters has been extended tremendously at the high end, from approximately 10 up to 10 000 000 °C/s and more. The combination of various calorimeters and the newly-developed Fast Scanning Calorimeters (FSC) now span 11 orders of magnitude, by which many processes can be mimicked according to the time scale(s) of chemical and physical transitions occurring during cooling, heating and isothermal stays in case heat is exchanged. This not only opens new areas of research on polymers, metals, pharmaceuticals and all kinds of substances with respect to glass transition, crystallization and melting phenomena, it also enables in-depth study of metastability and reorganization of samples on an 1 to 1000 ng scale. In addition, FSC will become a crucial tool for understanding and optimization of processing methods at high speeds like injection molding. The book resembles the state-of-the art in Thermal Analysis & Calorimetry and is an excellent starting point for both experts and newcomers in the field.
Amorphous Solid Dispersions
Author: Navnit Shah
Publisher: Springer
ISBN: 1493915983
Category : Medical
Languages : en
Pages : 702
Book Description
This volume offers a comprehensive guide on the theory and practice of amorphous solid dispersions (ASD) for handling challenges associated with poorly soluble drugs. In twenty-three inclusive chapters, the book examines thermodynamics and kinetics of the amorphous state and amorphous solid dispersions, ASD technologies, excipients for stabilizing amorphous solid dispersions such as polymers, and ASD manufacturing technologies, including spray drying, hot melt extrusion, fluid bed layering and solvent-controlled micro-precipitation technology (MBP). Each technology is illustrated by specific case studies. In addition, dedicated sections cover analytical tools and technologies for characterization of amorphous solid dispersions, the prediction of long-term stability, and the development of suitable dissolution methods and regulatory aspects. The book also highlights future technologies on the horizon, such as supercritical fluid processing, mesoporous silica, KinetiSol®, and the use of non-salt-forming organic acids and amino acids for the stabilization of amorphous systems. Amorphous Solid Dispersions: Theory and Practice is a valuable reference to pharmaceutical scientists interested in developing bioavailable and therapeutically effective formulations of poorly soluble molecules in order to advance these technologies and develop better medicines for the future.
Publisher: Springer
ISBN: 1493915983
Category : Medical
Languages : en
Pages : 702
Book Description
This volume offers a comprehensive guide on the theory and practice of amorphous solid dispersions (ASD) for handling challenges associated with poorly soluble drugs. In twenty-three inclusive chapters, the book examines thermodynamics and kinetics of the amorphous state and amorphous solid dispersions, ASD technologies, excipients for stabilizing amorphous solid dispersions such as polymers, and ASD manufacturing technologies, including spray drying, hot melt extrusion, fluid bed layering and solvent-controlled micro-precipitation technology (MBP). Each technology is illustrated by specific case studies. In addition, dedicated sections cover analytical tools and technologies for characterization of amorphous solid dispersions, the prediction of long-term stability, and the development of suitable dissolution methods and regulatory aspects. The book also highlights future technologies on the horizon, such as supercritical fluid processing, mesoporous silica, KinetiSol®, and the use of non-salt-forming organic acids and amino acids for the stabilization of amorphous systems. Amorphous Solid Dispersions: Theory and Practice is a valuable reference to pharmaceutical scientists interested in developing bioavailable and therapeutically effective formulations of poorly soluble molecules in order to advance these technologies and develop better medicines for the future.
Nano-Electronic Devices
Author: Dragica Vasileska
Publisher: Springer Science & Business Media
ISBN: 1441988408
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
This book surveys the advanced simulation methods needed for proper modeling of state-of-the-art nanoscale devices. It systematically describes theoretical approaches and the numerical solutions that are used in explaining the operation of both power devices as well as nano-scale devices. It clearly explains for what types of devices a particular method is suitable, which is the most critical point that a researcher faces and has to decide upon when modeling semiconductor devices.
Publisher: Springer Science & Business Media
ISBN: 1441988408
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
This book surveys the advanced simulation methods needed for proper modeling of state-of-the-art nanoscale devices. It systematically describes theoretical approaches and the numerical solutions that are used in explaining the operation of both power devices as well as nano-scale devices. It clearly explains for what types of devices a particular method is suitable, which is the most critical point that a researcher faces and has to decide upon when modeling semiconductor devices.