Push Recovery Control for Force-controlled Humanoid Robots PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Push Recovery Control for Force-controlled Humanoid Robots PDF full book. Access full book title Push Recovery Control for Force-controlled Humanoid Robots by Benjamin Stephens. Download full books in PDF and EPUB format.

Push Recovery Control for Force-controlled Humanoid Robots

Push Recovery Control for Force-controlled Humanoid Robots PDF Author: Benjamin Stephens
Publisher:
ISBN:
Category : Robots
Languages : en
Pages : 180

Book Description
Abstract: "Humanoid robots represent the state of the art in complex robot systems. High performance controllers that can handle unknown perturbations will be required if complex robots are to one day interact safely with people in everyday environments. Analyzing and predicting full-body behaviors is difficult in humanoid robots because of the high number of degrees of freedom and unstable nature of the dynamics. This thesis demonstrates the use of simple models to approximate the dynamics and simplify the design of reactive balance controllers. These simple models define distinct balance recovery strategies and improve state estimation. Push Recovery Model Predictive Control (PR-MPC), an optimization-based reactive balance controller that considers future actions and constraints using a simple COM model, is presented. This controller outputs feasible controls which are realized by Dynamic Balance Force Control (DBFC), a force controller that produces full-body joint torques. Push recovery, walking, and other force-based tasks are presented both in simulation and in experiments on the Sarcos Primus hydraulic humanoid robot."

Push Recovery Control for Force-controlled Humanoid Robots

Push Recovery Control for Force-controlled Humanoid Robots PDF Author: Benjamin Stephens
Publisher:
ISBN:
Category : Robots
Languages : en
Pages : 180

Book Description
Abstract: "Humanoid robots represent the state of the art in complex robot systems. High performance controllers that can handle unknown perturbations will be required if complex robots are to one day interact safely with people in everyday environments. Analyzing and predicting full-body behaviors is difficult in humanoid robots because of the high number of degrees of freedom and unstable nature of the dynamics. This thesis demonstrates the use of simple models to approximate the dynamics and simplify the design of reactive balance controllers. These simple models define distinct balance recovery strategies and improve state estimation. Push Recovery Model Predictive Control (PR-MPC), an optimization-based reactive balance controller that considers future actions and constraints using a simple COM model, is presented. This controller outputs feasible controls which are realized by Dynamic Balance Force Control (DBFC), a force controller that produces full-body joint torques. Push recovery, walking, and other force-based tasks are presented both in simulation and in experiments on the Sarcos Primus hydraulic humanoid robot."

Human-Inspired Balancing and Recovery Stepping for Humanoid Robots

Human-Inspired Balancing and Recovery Stepping for Humanoid Robots PDF Author: Kaul, Lukas Sebastian
Publisher: KIT Scientific Publishing
ISBN: 3731509032
Category : Computers
Languages : en
Pages : 258

Book Description
Robustly maintaining balance on two legs is an important challenge for humanoid robots. The work presented in this book represents a contribution to this area. It investigates efficient methods for the decision-making from internal sensors about whether and where to step, several improvements to efficient whole-body postural balancing methods, and proposes and evaluates a novel method for efficient recovery step generation, leveraging human examples and simulation-based reinforcement learning.

Push Recovery and Active Balancing for Inexpensive Humanoid Robots

Push Recovery and Active Balancing for Inexpensive Humanoid Robots PDF Author: Amirhossein Hosseinmemar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Active balancing of a humanoid robot is a challenging task due to the complexity of combining a walking gait, dynamic balancing, vision and high-level behaviors. My Ph.D research focuses on the active balancing and push recovery problems that allow inexpensive humanoid robots to balance while standing and walking, and to compensate for external forces. In this research, I have proposed a push recovery mechanism that employs two machine learning techniques, Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) to learn recovery step trajectories during push recovery using a closed-loop feedback control. I have implemented a 3D model using the Robot Operating System (ROS) and Gazebo. To reduce wear and tear on the real robot, I used this model for learning the recovery steps for different impact strengths and directions. I evaluated my approach in both in the real world and in simulation. All the real world experiments are performed by Polaris, a teen- sized humanoid robot in the Autonomous Agent Laboratory (AALab), University of Manitoba. The design, implementation, and evaluation of hardware, software, and kinematic models are discussed in this document.

Adaptive Control for Robotic Manipulators

Adaptive Control for Robotic Manipulators PDF Author: Dan Zhang
Publisher: CRC Press
ISBN: 1351678922
Category : Science
Languages : en
Pages : 407

Book Description
The robotic mechanism and its controller make a complete system. As the robotic mechanism is reconfigured, the control system has to be adapted accordingly. The need for the reconfiguration usually arises from the changing functional requirements. This book will focus on the adaptive control of robotic manipulators to address the changed conditions. The aim of the book is to summarise and introduce the state-of-the-art technologies in the field of adaptive control of robotic manipulators in order to improve the methodologies on the adaptive control of robotic manipulators. Advances made in the past decades are described in the book, including adaptive control theories and design, and application of adaptive control to robotic manipulators.

Pursh Recovery for Humanoid Robots Using Linearized Double Inverted Pendulum

Pursh Recovery for Humanoid Robots Using Linearized Double Inverted Pendulum PDF Author: Saurav Singh
Publisher:
ISBN:
Category : Robots
Languages : en
Pages : 68

Book Description
"Biped robots have come a long way in imitating a human being's anatomy and posture. Standing balance and push recovery are some of the biggest challenges for such robots. This work presents a novel simplified model for a humanoid robot to recover from external disturbances. The proposed Linearized Double Inverted Pendulum, models the dynamics of a complex humanoid robot that can use ankle and hip recovery strategies while taking full advantage of the advances in controls theory research. To support this, an LQR based control architecture is also presented in this work. The joint torque signals are generated along with ankle torque constraints to ensure the Center of Pressure stays within the support polygon. Simulation results show that the presented model can successfully recover from external disturbances while using minimal effort when compared to other widely used simplified models. It optimally uses the the torso weight to generate angular momentum about the pelvis of the robot to counter-balance the effects of external disturbances. The proposed method was validated on simulated `TigerBot-VII', a humanoid robot."--Abstract.

Model-free Control Methods for Gait and Standing Push Recovery in Bipedal Humanoid Robots

Model-free Control Methods for Gait and Standing Push Recovery in Bipedal Humanoid Robots PDF Author: Jerry Sweafford (Jr.)
Publisher:
ISBN:
Category : Androids
Languages : en
Pages : 0

Book Description


Advances in Robot Design and Intelligent Control

Advances in Robot Design and Intelligent Control PDF Author: Aleksandar Rodić
Publisher: Springer
ISBN: 3319490583
Category : Technology & Engineering
Languages : en
Pages : 651

Book Description
This book presents the proceedings of the 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 held in Belgrade, Serbia, on June 30th–July 2nd, 2016. In keeping with the tradition of the event, RAAD 2016 covered all the important areas of research and innovation in new robot designs and intelligent robot control, with papers including Intelligent robot motion control; Robot vision and sensory processing; Novel design of robot manipulators and grippers; Robot applications in manufacturing and services; Autonomous systems, humanoid and walking robots; Human–robot interaction and collaboration; Cognitive robots and emotional intelligence; Medical, human-assistive robots and prosthetic design; Robots in construction and arts, and Evolution, education, legal and social issues of robotics. For the first time in RAAD history, the themes cloud robots, legal and ethical issues in robotics as well as robots in arts were included in the technical program. The book is a valuable resource for researchers in fields of robotics, engineers who implement robotic solutions in manufacturing, services and healthcare, and master’s and Ph.D. students working on robotics projects.

Push Recovery of Humanoid Robot Using Thruster and Acceleration Compensation

Push Recovery of Humanoid Robot Using Thruster and Acceleration Compensation PDF Author: Siddharth A. Oturkar
Publisher:
ISBN:
Category :
Languages : en
Pages : 64

Book Description
Abstract: This thesis is concerned with a problem of balancing the humanoid robot after an external impact. Dynamic model of the humanoid robot is derived using Lagrangian dynamic formulation. Use of the maximum joint accelerations to reject disturbance is studied. In our approach, we propose the use of non-natural force like thruster on the torso of the humanoid robot for balance recovery. Mathematical simulation of derived dynamic model is performed using MATLAB. Plotted results prove the validity and usefulness of the proposed approach. We also show that, acceleration compensation and using thruster are complementary to each other. We prove that both techniques can be used together to reject large disturbances in minimum time.

Humanoid Robotics: A Reference

Humanoid Robotics: A Reference PDF Author: Prahlad Vadakkepat
Publisher: Springer
ISBN: 9789400760455
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Humanoid Robotics provides a comprehensive compilation of developments in the conceptualization, design and development of humanoid robots and related technologies. Human beings have built the environment they occupy (living spaces, instruments and vehicles) to suit two-legged systems. Building systems, especially in robotics, that are compatible with the well-established, human-based surroundings and which could naturally interact with humans is an ultimate goal for all researches and engineers. Humanoid Robots are systems (i.e. robots) which mimic human behavior. Humanoids provide a platform to study the construction of systems that behave and interact like humans. A broad range of applications ranging from daily housework to complex medical surgery, deep ocean exploration, and other potentially dangerous tasks are possible using humanoids. In addition, the study of humanoid robotics provides a platform to understand the mechanisms and offers a physical visual of how humans interact, think, and react with the surroundings and how such behaviors could be reassembled and reconstructed. Currently, the most challenging issue with bipedal humanoids is to make them balance on two legs, The purportedly simple act of finding the best balance that enables easy walking, jumping and running requires some of the most sophisticated development of robotic systems- those that will ultimately mimic fully the diversity and dexterity of human beings. Other typical human-like interactions such as complex thought and conversations on the other hand, also pose barriers for the development of humanoids because we are yet to understand fully the way in which we humans interact with our environment and consequently to replicate this in humanoids.

Humanoid Robot Push Recovery Strategy Based on CMP Criterion and Angular Momentum Regulation

Humanoid Robot Push Recovery Strategy Based on CMP Criterion and Angular Momentum Regulation PDF Author: 張哲軒
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description