Protein Turnover and Lysosome Function PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Protein Turnover and Lysosome Function PDF full book. Access full book title Protein Turnover and Lysosome Function by Harold L. Segal. Download full books in PDF and EPUB format.

Protein Turnover and Lysosome Function

Protein Turnover and Lysosome Function PDF Author: Harold L. Segal
Publisher: Academic Press
ISBN: 1483220192
Category : Science
Languages : en
Pages : 811

Book Description
Protein Turnover and Lysosome Function comprises the proceedings of a symposium under the same title held at the State University of New York at Buffalo on August 21-26, 1977. The book discusses mechanisms of protein turnover, as well as the identification and characterization of intracellular proteases. The text also describes the internalization of macromolecules into the intracellular digestive system; the types of specificity entailed; and the fate of the membrane material involved in the vacuolization process. Biochemists, pathologists, cell biologists, molecular biologists, and physiologists will find the book invaluable.

Protein Turnover and Lysosome Function

Protein Turnover and Lysosome Function PDF Author: Harold L. Segal
Publisher: Academic Press
ISBN: 1483220192
Category : Science
Languages : en
Pages : 811

Book Description
Protein Turnover and Lysosome Function comprises the proceedings of a symposium under the same title held at the State University of New York at Buffalo on August 21-26, 1977. The book discusses mechanisms of protein turnover, as well as the identification and characterization of intracellular proteases. The text also describes the internalization of macromolecules into the intracellular digestive system; the types of specificity entailed; and the fate of the membrane material involved in the vacuolization process. Biochemists, pathologists, cell biologists, molecular biologists, and physiologists will find the book invaluable.

Lysosomes

Lysosomes PDF Author: H. Glaumann
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 760

Book Description


Lysosomes and Intracellular Protein Turnover

Lysosomes and Intracellular Protein Turnover PDF Author: Harold L. Segal
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description


The Role of Protein and Amino Acids in Sustaining and Enhancing Performance

The Role of Protein and Amino Acids in Sustaining and Enhancing Performance PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309172810
Category : Technology & Engineering
Languages : en
Pages : 448

Book Description
It is a commonly held belief that athletes, particularly body builders, have greater requirements for dietary protein than sedentary individuals. However, the evidence in support of this contention is controversial. This book is the latest in a series of publications designed to inform both civilian and military scientists and personnel about issues related to nutrition and military service. Among the many other stressors they experience, soldiers face unique nutritional demands during combat. Of particular concern is the role that dietary protein might play in controlling muscle mass and strength, response to injury and infection, and cognitive performance. The first part of the book contains the committee's summary of the workshop, responses to the Army's questions, conclusions, and recommendations. The remainder of the book contains papers contributed by speakers at the workshop on such topics as, the effects of aging and hormones on regulation of muscle mass and function, alterations in protein metabolism due to the stress of injury or infection, the role of individual amino acids, the components of proteins, as neurotransmitters, hormones, and modulators of various physiological processes, and the efficacy and safety considerations associated with dietary supplements aimed at enhancing performance.

Intracellular Protein Degradation

Intracellular Protein Degradation PDF Author: A.J. Rivett
Publisher: Elsevier Science
ISBN: 9780762303878
Category : Science
Languages : en
Pages : 0

Book Description
This volume brings together a set of reviews that provide a summary of our current knowledge of the proteolytic machinery and of the pathways of protein breakdown of prokaryotic and eukaryotic cells. Intracellular protein degradation is much more than just a mechanism for the removal of incorrectly folded or damaged proteins. Since many short-lived proteins have important regulatory functions, proteolysis makes a significant contribution to many cellular processes including cell cycle regulation and transciptional control. In addition, limited proteolytic cleavage can provide a rapid and efficient mechanism of enzyme activation or inactivation in eukaryotic cells. In the first chapter, Maurizi provides an introduction to intracellular protein degradation, describes the structure and functions of bacterial ATP-dependent proteases, and explores the relationship between chaperone functions and protein degradation. Many of the principles also apply to eukaryotic cells, although the proteases involved are often not the same. Interestingly, homologues of one of the bacterial proteases, Ion protease, have been found in mitochondria in yeast and mammals, and homologues of proteasomes, which are found in all eukaryotic cells (see below), have been discovered in some eubacteria. Studies of proteolysis in yeast have contributed greatly to the elucidation of both lysosomal (vacuolar) and nonlysosomal proteolytic pathways in eukaryotic cells. Thumm and Wolf (chapter 2) describe studies that have elucidated the functions of proteasomes in nonlysosomal proteolysis and the contributions of lysosomal proteases to intracellular protein breakdown. Proteins can be selected for degradation by a variety of differen mechanisms. The ubiquitin system is one complex and highly regulated mechanism by which eukaryotic proteins are targetted for degradation by proteosomes. In chapter 3, Wilkinson reviews the components and functions of the ubiquitin system and considers some of the known substrates for this pathway which include cell cycle and transcriptional regulators. The structure and functions of proteosomes and their regulatory components are described in the two subsequent chapters by Tanaka and Tanahashi and by Dubiel and Rechsteiner. Proteasomes were the first known example of threonine proteases. They are multisubunit complexes that, in addition to being responsible for the turnover of most short-lived nuclear and cytoplasmic protein, are also involved in antigen processing for presentation by the MHC class I pathway. Recent studies reviewed by McCracken and colleagues (chapter 6) lead to the exciting conclusion that some ER-associated proteins are degraded by cytosolic proteasomes. Lysosomes are responsible for the degradation of long-lived proteins and for the enhanced protein degradation observed under starvation conditions. In chapter 7 Knecht and colleagues review the lysosomal proteases and describe studies of the roles of lysosomes and the mechanisms for protein uptake into lysosomes. Methods of measuring the relative contribution of different proteolytic systems (e.g., ubiquitin-proteasome pathway, calcium-dependent proteases, lysosomes) to muscle protein degradation, and the conclusions from such studies, are reviewed by Attai and Taillinder in the following chapter. Finally, proteases play an important role in signaling apoptosis by catalyzing the limited cleavage of enzymes. Mason and Beyette review the role of the major players, caspases, which are both activated by and catalyze limite proteolysis, and also consider the involvement of other protoelytic enzymes in this pathway leading cell death.

Degradation of Proteins by Lysosomes

Degradation of Proteins by Lysosomes PDF Author: Willem Huisman
Publisher:
ISBN:
Category :
Languages : en
Pages : 98

Book Description


Protein Turnover in Mammalian Tissues and in the Whole Body

Protein Turnover in Mammalian Tissues and in the Whole Body PDF Author: John Conrad Waterlow
Publisher: North-Holland
ISBN:
Category : Nature
Languages : en
Pages : 824

Book Description


Lysosomes

Lysosomes PDF Author: Paul Saftig
Publisher: Springer Science & Business Media
ISBN: 0387289577
Category : Science
Languages : en
Pages : 208

Book Description
Lysosomes are membrane-surrounded organelles which are present in all animal cells. The importance of this organelle is underlined by an increasing number of human diseases, which are associated with an impaired function of the lysosomal compartment. This book summarizes the current state-of-the art knowledge about this unique organelle. It addresses the biogenesis of this compartment, the transport of lysosomal proteins, the role of the lysosomal membrane in lysosomal stability and transport, the function of lysosomal proteases and hydrolases, lysosomal storage disorders, and new concepts on how to treat these diseases. In addition to these classical topics, new insights into lysosomal functions are covered by chapters dealing with specialized lysosomes involved in bone resorption and plasma membrane repair, the lysosomal transciptome, and proteome and the emerging role of lysosomes in special forms of autophagy. This book will provide readers with a comprehensive overview into how this fascinating organelle works and how research in the field is developing.

Lysosomes

Lysosomes PDF Author: Pooja Dhiman
Publisher: BoD – Books on Demand
ISBN: 9535135074
Category : Science
Languages : en
Pages : 176

Book Description
This book covers current advances in disorders associated with lysosomal function along with techniques to study its function. All chapters are complete in themselves but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on lysosomal diseases and opens new possible research paths.

Ubiquitin-mediated Degradation Via UPS and Lysosome

Ubiquitin-mediated Degradation Via UPS and Lysosome PDF Author: Qizhi Sun
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Ubiquitination plays a fundamental role in determining protein fate. Once ubiquitinated, the cargo is directed to the proteasome for partial or complete degradation or lysosome for complete degradation. Failing to eliminate these cargos results in the accumulation of toxic proteins that contribute to neurodegenerative and immunological diseases, cancer and other human maladies. Thus, identifying proteins subject to ubiquitin-mediated degradation and characterizing the mechanisms governing these processes underscores their importance to human health. The calcium/calmodulin-dependent serine protein kinase (CASK) is one such protein that is required for brain development. However, mutations that cause CASK to accumulate are correlated to X-linked mental retardation and autism spectrum disorder in humans. I have investigated CASK protein turnover and found that the protein is constantly degraded. This degradation, however, is only partial suggesting that the peptides generated have functions distinct from the full-length polypeptide. Subsequent analyses revealed that these peptides form as a result of CASK being first phosphorylated and then ubiquitinated prior to its limited degradation in the proteasome. During these investigations I identified poly ADP-ribosyl transferase-like 2 (PARP-2) as a protein also degraded through the ubiquitin-proteasome system. PARP-2 degradation occurs when cells are grown in the presence of serum and Ro52 was identified as a candidate E3 ubiquitin ligase required for ubiquitination. Interestingly, when cells are serum-starved, PARP-2 was sequestered to an SDS-insoluble fraction by a yet-to-be identified mechanism. Finally, further investigations with Ro52 revealed that when ectopically expressed, cells develop large circular structures, which I identified to be autophagosomes, the intermediate organelles in autophagy that selectively target ubiquitinated cargo for lysosomal degradation. The RING finger domain of Ro52 and its E3 ligase activity are, however, not required for this process and the deletion of the RING domain does not affect the inclusion and targeting of ubiquitinated proteins to the autophagosomes. Together, these results from studying two disparate proteins, CASK and PARP-2, not only highlight the selective ability of ubiquitination to specify the limited or complete degradation of proteins, but also shed new light on Ro52 as an adaptor involved in the autophagic turnover of proteins in the lysosome.