Author: Gila Hanna
Publisher: Springer Nature
ISBN: 3030284832
Category : Education
Languages : en
Pages : 374
Book Description
This book presents chapters exploring the most recent developments in the role of technology in proving. The full range of topics related to this theme are explored, including computer proving, digital collaboration among mathematicians, mathematics teaching in schools and universities, and the use of the internet as a site of proof learning. Proving is sometimes thought to be the aspect of mathematical activity most resistant to the influence of technological change. While computational methods are well known to have a huge importance in applied mathematics, there is a perception that mathematicians seeking to derive new mathematical results are unaffected by the digital era. The reality is quite different. Digital technologies have transformed how mathematicians work together, how proof is taught in schools and universities, and even the nature of proof itself. Checking billions of cases in extremely large but finite sets, impossible a few decades ago, has now become a standard method of proof. Distributed proving, by teams of mathematicians working independently on sections of a problem, has become very much easier as digital communication facilitates the sharing and comparison of results. Proof assistants and dynamic proof environments have influenced the verification or refutation of conjectures, and ultimately how and why proof is taught in schools. And techniques from computer science for checking the validity of programs are being used to verify mathematical proofs. Chapters in this book include not only research reports and case studies, but also theoretical essays, reviews of the state of the art in selected areas, and historical studies. The authors are experts in the field.
Proof Technology in Mathematics Research and Teaching
Author: Gila Hanna
Publisher: Springer Nature
ISBN: 3030284832
Category : Education
Languages : en
Pages : 374
Book Description
This book presents chapters exploring the most recent developments in the role of technology in proving. The full range of topics related to this theme are explored, including computer proving, digital collaboration among mathematicians, mathematics teaching in schools and universities, and the use of the internet as a site of proof learning. Proving is sometimes thought to be the aspect of mathematical activity most resistant to the influence of technological change. While computational methods are well known to have a huge importance in applied mathematics, there is a perception that mathematicians seeking to derive new mathematical results are unaffected by the digital era. The reality is quite different. Digital technologies have transformed how mathematicians work together, how proof is taught in schools and universities, and even the nature of proof itself. Checking billions of cases in extremely large but finite sets, impossible a few decades ago, has now become a standard method of proof. Distributed proving, by teams of mathematicians working independently on sections of a problem, has become very much easier as digital communication facilitates the sharing and comparison of results. Proof assistants and dynamic proof environments have influenced the verification or refutation of conjectures, and ultimately how and why proof is taught in schools. And techniques from computer science for checking the validity of programs are being used to verify mathematical proofs. Chapters in this book include not only research reports and case studies, but also theoretical essays, reviews of the state of the art in selected areas, and historical studies. The authors are experts in the field.
Publisher: Springer Nature
ISBN: 3030284832
Category : Education
Languages : en
Pages : 374
Book Description
This book presents chapters exploring the most recent developments in the role of technology in proving. The full range of topics related to this theme are explored, including computer proving, digital collaboration among mathematicians, mathematics teaching in schools and universities, and the use of the internet as a site of proof learning. Proving is sometimes thought to be the aspect of mathematical activity most resistant to the influence of technological change. While computational methods are well known to have a huge importance in applied mathematics, there is a perception that mathematicians seeking to derive new mathematical results are unaffected by the digital era. The reality is quite different. Digital technologies have transformed how mathematicians work together, how proof is taught in schools and universities, and even the nature of proof itself. Checking billions of cases in extremely large but finite sets, impossible a few decades ago, has now become a standard method of proof. Distributed proving, by teams of mathematicians working independently on sections of a problem, has become very much easier as digital communication facilitates the sharing and comparison of results. Proof assistants and dynamic proof environments have influenced the verification or refutation of conjectures, and ultimately how and why proof is taught in schools. And techniques from computer science for checking the validity of programs are being used to verify mathematical proofs. Chapters in this book include not only research reports and case studies, but also theoretical essays, reviews of the state of the art in selected areas, and historical studies. The authors are experts in the field.
Advances in Mathematics Education Research on Proof and Proving
Author: Andreas J. Stylianides
Publisher: Springer
ISBN: 3319709968
Category : Education
Languages : en
Pages : 298
Book Description
This book explores new trends and developments in mathematics education research related to proof and proving, the implications of these trends and developments for theory and practice, and directions for future research. With contributions from researchers working in twelve different countries, the book brings also an international perspective to the discussion and debate of the state of the art in this important area. The book is organized around the following four themes, which reflect the breadth of issues addressed in the book: • Theme 1: Epistemological issues related to proof and proving; • Theme 2: Classroom-based issues related to proof and proving; • Theme 3: Cognitive and curricular issues related to proof and proving; and • Theme 4: Issues related to the use of examples in proof and proving. Under each theme there are four main chapters and a concluding chapter offering a commentary on the theme overall.
Publisher: Springer
ISBN: 3319709968
Category : Education
Languages : en
Pages : 298
Book Description
This book explores new trends and developments in mathematics education research related to proof and proving, the implications of these trends and developments for theory and practice, and directions for future research. With contributions from researchers working in twelve different countries, the book brings also an international perspective to the discussion and debate of the state of the art in this important area. The book is organized around the following four themes, which reflect the breadth of issues addressed in the book: • Theme 1: Epistemological issues related to proof and proving; • Theme 2: Classroom-based issues related to proof and proving; • Theme 3: Cognitive and curricular issues related to proof and proving; and • Theme 4: Issues related to the use of examples in proof and proving. Under each theme there are four main chapters and a concluding chapter offering a commentary on the theme overall.
Proof and Proving in Mathematics Education
Author: Gila Hanna
Publisher: Springer Science & Business Media
ISBN: 9400721293
Category : Education
Languages : en
Pages : 468
Book Description
*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* One of the most significant tasks facing mathematics educators is to understand the role of mathematical reasoning and proving in mathematics teaching, so that its presence in instruction can be enhanced. This challenge has been given even greater importance by the assignment to proof of a more prominent place in the mathematics curriculum at all levels. Along with this renewed emphasis, there has been an upsurge in research on the teaching and learning of proof at all grade levels, leading to a re-examination of the role of proof in the curriculum and of its relation to other forms of explanation, illustration and justification. This book, resulting from the 19th ICMI Study, brings together a variety of viewpoints on issues such as: The potential role of reasoning and proof in deepening mathematical understanding in the classroom as it does in mathematical practice. The developmental nature of mathematical reasoning and proof in teaching and learning from the earliest grades. The development of suitable curriculum materials and teacher education programs to support the teaching of proof and proving. The book considers proof and proving as complex but foundational in mathematics. Through the systematic examination of recent research this volume offers new ideas aimed at enhancing the place of proof and proving in our classrooms.
Publisher: Springer Science & Business Media
ISBN: 9400721293
Category : Education
Languages : en
Pages : 468
Book Description
*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* One of the most significant tasks facing mathematics educators is to understand the role of mathematical reasoning and proving in mathematics teaching, so that its presence in instruction can be enhanced. This challenge has been given even greater importance by the assignment to proof of a more prominent place in the mathematics curriculum at all levels. Along with this renewed emphasis, there has been an upsurge in research on the teaching and learning of proof at all grade levels, leading to a re-examination of the role of proof in the curriculum and of its relation to other forms of explanation, illustration and justification. This book, resulting from the 19th ICMI Study, brings together a variety of viewpoints on issues such as: The potential role of reasoning and proof in deepening mathematical understanding in the classroom as it does in mathematical practice. The developmental nature of mathematical reasoning and proof in teaching and learning from the earliest grades. The development of suitable curriculum materials and teacher education programs to support the teaching of proof and proving. The book considers proof and proving as complex but foundational in mathematics. Through the systematic examination of recent research this volume offers new ideas aimed at enhancing the place of proof and proving in our classrooms.
Explanation and Proof in Mathematics
Author: Gila Hanna
Publisher: Springer Science & Business Media
ISBN: 1441905766
Category : Education
Languages : en
Pages : 289
Book Description
In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practice, contributors explore the role of refutation in generating proofs, the varied links between experiment and deduction, the use of diagrammatic thinking in addition to pure logic, and the uses of proof in mathematics education (including a critique of "authoritative" versus "authoritarian" teaching styles). A sampling of the coverage: The conjoint origins of proof and theoretical physics in ancient Greece. Proof as bearers of mathematical knowledge. Bridging knowing and proving in mathematical reasoning. The role of mathematics in long-term cognitive development of reasoning. Proof as experiment in the work of Wittgenstein. Relationships between mathematical proof, problem-solving, and explanation. Explanation and Proof in Mathematics is certain to attract a wide range of readers, including mathematicians, mathematics education professionals, researchers, students, and philosophers and historians of mathematics.
Publisher: Springer Science & Business Media
ISBN: 1441905766
Category : Education
Languages : en
Pages : 289
Book Description
In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practice, contributors explore the role of refutation in generating proofs, the varied links between experiment and deduction, the use of diagrammatic thinking in addition to pure logic, and the uses of proof in mathematics education (including a critique of "authoritative" versus "authoritarian" teaching styles). A sampling of the coverage: The conjoint origins of proof and theoretical physics in ancient Greece. Proof as bearers of mathematical knowledge. Bridging knowing and proving in mathematical reasoning. The role of mathematics in long-term cognitive development of reasoning. Proof as experiment in the work of Wittgenstein. Relationships between mathematical proof, problem-solving, and explanation. Explanation and Proof in Mathematics is certain to attract a wide range of readers, including mathematicians, mathematics education professionals, researchers, students, and philosophers and historians of mathematics.
Proof in Mathematics Education
Author: David A. Reid
Publisher: BRILL
ISBN: 946091246X
Category : Education
Languages : en
Pages : 265
Book Description
Research on teaching and learning proof and proving has expanded in recent decades. This reflects the growth of mathematics education research in general, but also an increased emphasis on proof in mathematics education.
Publisher: BRILL
ISBN: 946091246X
Category : Education
Languages : en
Pages : 265
Book Description
Research on teaching and learning proof and proving has expanded in recent decades. This reflects the growth of mathematics education research in general, but also an increased emphasis on proof in mathematics education.
Second Handbook of Research on Mathematics Teaching and Learning
Author: Frank K. Lester
Publisher: IAP
ISBN: 160752709X
Category : Education
Languages : en
Pages : 1380
Book Description
The audience remains much the same as for the 1992 Handbook, namely, mathematics education researchers and other scholars conducting work in mathematics education. This group includes college and university faculty, graduate students, investigators in research and development centers, and staff members at federal, state, and local agencies that conduct and use research within the discipline of mathematics. The intent of the authors of this volume is to provide useful perspectives as well as pertinent information for conducting investigations that are informed by previous work. The Handbook should also be a useful textbook for graduate research seminars. In addition to the audience mentioned above, the present Handbook contains chapters that should be relevant to four other groups: teacher educators, curriculum developers, state and national policy makers, and test developers and others involved with assessment. Taken as a whole, the chapters reflects the mathematics education research community's willingness to accept the challenge of helping the public understand what mathematics education research is all about and what the relevance of their research fi ndings might be for those outside their immediate community.
Publisher: IAP
ISBN: 160752709X
Category : Education
Languages : en
Pages : 1380
Book Description
The audience remains much the same as for the 1992 Handbook, namely, mathematics education researchers and other scholars conducting work in mathematics education. This group includes college and university faculty, graduate students, investigators in research and development centers, and staff members at federal, state, and local agencies that conduct and use research within the discipline of mathematics. The intent of the authors of this volume is to provide useful perspectives as well as pertinent information for conducting investigations that are informed by previous work. The Handbook should also be a useful textbook for graduate research seminars. In addition to the audience mentioned above, the present Handbook contains chapters that should be relevant to four other groups: teacher educators, curriculum developers, state and national policy makers, and test developers and others involved with assessment. Taken as a whole, the chapters reflects the mathematics education research community's willingness to accept the challenge of helping the public understand what mathematics education research is all about and what the relevance of their research fi ndings might be for those outside their immediate community.
Research and Development in University Mathematics Education
Author: Viviane Durand-Guerrier
Publisher: Routledge
ISBN: 1000369242
Category : Education
Languages : en
Pages : 283
Book Description
In the last thirty years or so, the need to address the challenges of teaching and learning mathematics at university level has become increasingly appreciated by university mathematics teachers, and beyond, by educational institutions around the world. Indeed, mathematics is both a condition and an obstacle to success for students in many educational programmes vital to the 21st century knowledge society, for example in pure and applied mathematics, engineering, natural sciences, technology, economics, finance, management and so on. This breadth of impact of mathematics implies the urgency of developing research in university mathematics education, and of sharing results of this research widely. This book provides a bespoke opportunity for an international audience of researchers in didactics of mathematics, mathematicians and any teacher or researcher with an interest in this area to be informed about state-of-the-art developments and to heed future research agendas. This book emerged from the activities of the research project INDRUM (acronym for International Network for Didactic Research in University Mathematics), which aims to contribute to the development of research in didactics of mathematics at all levels of tertiary education, with a particular concern for the development of early-career researchers in the field and for dialogue with university mathematicians. The aim of the book is to provide a deep synthesis of the research field as it appears through two INDRUM conferences organised in 2016 and 2018. It is an original contribution which highlights key research perspectives, addresses seminal theoretical and methodological issues and reports substantial results concerning the teaching and learning of mathematics at university level, including the teaching and learning of specific topics in advanced mathematics across a wide range of university programmes.
Publisher: Routledge
ISBN: 1000369242
Category : Education
Languages : en
Pages : 283
Book Description
In the last thirty years or so, the need to address the challenges of teaching and learning mathematics at university level has become increasingly appreciated by university mathematics teachers, and beyond, by educational institutions around the world. Indeed, mathematics is both a condition and an obstacle to success for students in many educational programmes vital to the 21st century knowledge society, for example in pure and applied mathematics, engineering, natural sciences, technology, economics, finance, management and so on. This breadth of impact of mathematics implies the urgency of developing research in university mathematics education, and of sharing results of this research widely. This book provides a bespoke opportunity for an international audience of researchers in didactics of mathematics, mathematicians and any teacher or researcher with an interest in this area to be informed about state-of-the-art developments and to heed future research agendas. This book emerged from the activities of the research project INDRUM (acronym for International Network for Didactic Research in University Mathematics), which aims to contribute to the development of research in didactics of mathematics at all levels of tertiary education, with a particular concern for the development of early-career researchers in the field and for dialogue with university mathematicians. The aim of the book is to provide a deep synthesis of the research field as it appears through two INDRUM conferences organised in 2016 and 2018. It is an original contribution which highlights key research perspectives, addresses seminal theoretical and methodological issues and reports substantial results concerning the teaching and learning of mathematics at university level, including the teaching and learning of specific topics in advanced mathematics across a wide range of university programmes.
Mathematics Education in the Age of Artificial Intelligence
Author: Philippe R. Richard
Publisher: Springer Nature
ISBN: 3030869091
Category : Education
Languages : en
Pages : 464
Book Description
This book highlights the contribution of artificial intelligence for mathematics education. It provides concrete ideas supported by mathematical work obtained through dynamic international collaboration, and discusses the flourishing of new mathematics in the contemporary world from a sustainable development perspective. Over the past thirty years, artificial intelligence has gradually infiltrated all facets of society. When it is deployed in interaction with the human designer or user, AI certainly raises new ethical questions. But as soon as it aims to augment intelligence in a kind of human-machine partnership, it goes to the heart of knowledge development and the very performance of work. The proposed themes and the sections of the book address original issues relating to the creation of AI milieus to work on mathematics, to the AI-supported learning of mathematics and to the coordination of « usual » paper/pencil techniques and « new » AI-aided educational working spaces. The authors of the book and the coordinators of each section are all established specialists in mathematics didactics, mathematics and computer science. In summary, this book is a must-read for everyone interested in the teaching and learning of mathematics, and it concerns the interaction between the human and the machine in both directions. It contains ideas, questions and inspiration that invite to take up the challenge of Artificial Intelligence contributing to Mathematical Human Learning.
Publisher: Springer Nature
ISBN: 3030869091
Category : Education
Languages : en
Pages : 464
Book Description
This book highlights the contribution of artificial intelligence for mathematics education. It provides concrete ideas supported by mathematical work obtained through dynamic international collaboration, and discusses the flourishing of new mathematics in the contemporary world from a sustainable development perspective. Over the past thirty years, artificial intelligence has gradually infiltrated all facets of society. When it is deployed in interaction with the human designer or user, AI certainly raises new ethical questions. But as soon as it aims to augment intelligence in a kind of human-machine partnership, it goes to the heart of knowledge development and the very performance of work. The proposed themes and the sections of the book address original issues relating to the creation of AI milieus to work on mathematics, to the AI-supported learning of mathematics and to the coordination of « usual » paper/pencil techniques and « new » AI-aided educational working spaces. The authors of the book and the coordinators of each section are all established specialists in mathematics didactics, mathematics and computer science. In summary, this book is a must-read for everyone interested in the teaching and learning of mathematics, and it concerns the interaction between the human and the machine in both directions. It contains ideas, questions and inspiration that invite to take up the challenge of Artificial Intelligence contributing to Mathematical Human Learning.
Uses of Technology in Lower Secondary Mathematics Education
Author: Paul Drijvers
Publisher: Springer
ISBN: 3319336665
Category : Education
Languages : en
Pages : 41
Book Description
This topical survey provides an overview of the current state of the art in technology use in mathematics education, including both practice-oriented experiences and research-based evidence, as seen from an international perspective. Three core themes are discussed: Evidence of effectiveness; Digital assessment; and Communication and collaboration. The survey’s final section offers suggestions for future trends in technology-rich mathematics education and provides a research agenda reflecting those trends. Predicting what lower secondary mathematics education might look like in 2025 with respect to the role of digital tools in curricula, teaching and learning, it examines the question of how teachers can integrate physical and virtual experiences to promote a deeper understanding of mathematics. The issues and findings presented here provide an overview of current research and offer a glimpse into a potential future characterized by the effective integration of technology to support mathematics teaching and learning at the lower secondary level.
Publisher: Springer
ISBN: 3319336665
Category : Education
Languages : en
Pages : 41
Book Description
This topical survey provides an overview of the current state of the art in technology use in mathematics education, including both practice-oriented experiences and research-based evidence, as seen from an international perspective. Three core themes are discussed: Evidence of effectiveness; Digital assessment; and Communication and collaboration. The survey’s final section offers suggestions for future trends in technology-rich mathematics education and provides a research agenda reflecting those trends. Predicting what lower secondary mathematics education might look like in 2025 with respect to the role of digital tools in curricula, teaching and learning, it examines the question of how teachers can integrate physical and virtual experiences to promote a deeper understanding of mathematics. The issues and findings presented here provide an overview of current research and offer a glimpse into a potential future characterized by the effective integration of technology to support mathematics teaching and learning at the lower secondary level.
Technology in Mathematics Teaching
Author: Gilles Aldon
Publisher: Springer
ISBN: 3030197417
Category : Education
Languages : en
Pages : 335
Book Description
This book comprises chapters featuring a state of the art of research on digital technology in mathematics education. The chapters are extended versions of a selection of papers from the Proceedings of the 13th International Conference on Technology in Mathematics Teaching (ICTMT-13), which was held in Lyon, France, from July 3rd to 6th. ICTMT-13 gathered together over one hundred participants from twenty countries sharing research and empirical results on the topical issues of technology and its potential to improve mathematics teaching and learning. The chapters are organised into 4 themed parts, namely assessment in mathematics education and technology, which was the main focus of the conference, innovative technology and approaches to mathematics education, teacher education and professional development toward the technology use, and mathematics teaching and learning experiences with technology. In 13 chapters contained in the book, prominent mathematics educators from all over the world present the most recent theoretical and practical advances on these themes This book is of particular interest to researchers, teachers, teacher educators and other actors interested in digital technology in mathematics education.
Publisher: Springer
ISBN: 3030197417
Category : Education
Languages : en
Pages : 335
Book Description
This book comprises chapters featuring a state of the art of research on digital technology in mathematics education. The chapters are extended versions of a selection of papers from the Proceedings of the 13th International Conference on Technology in Mathematics Teaching (ICTMT-13), which was held in Lyon, France, from July 3rd to 6th. ICTMT-13 gathered together over one hundred participants from twenty countries sharing research and empirical results on the topical issues of technology and its potential to improve mathematics teaching and learning. The chapters are organised into 4 themed parts, namely assessment in mathematics education and technology, which was the main focus of the conference, innovative technology and approaches to mathematics education, teacher education and professional development toward the technology use, and mathematics teaching and learning experiences with technology. In 13 chapters contained in the book, prominent mathematics educators from all over the world present the most recent theoretical and practical advances on these themes This book is of particular interest to researchers, teachers, teacher educators and other actors interested in digital technology in mathematics education.