Projective and Cayley-Klein Geometries PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Projective and Cayley-Klein Geometries PDF full book. Access full book title Projective and Cayley-Klein Geometries by Arkadij L. Onishchik. Download full books in PDF and EPUB format.

Projective and Cayley-Klein Geometries

Projective and Cayley-Klein Geometries PDF Author: Arkadij L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 3540356452
Category : Mathematics
Languages : en
Pages : 445

Book Description
This book offers an introduction into projective geometry. The first part presents n-dimensional projective geometry over an arbitrary skew field; the real, the complex, and the quaternionic geometries are the central topics, finite geometries playing only a minor part. The second deals with classical linear and projective groups and the associated geometries. The final section summarizes selected results and problems from the geometry of transformation groups.

Projective and Cayley-Klein Geometries

Projective and Cayley-Klein Geometries PDF Author: Arkadij L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 3540356452
Category : Mathematics
Languages : en
Pages : 445

Book Description
This book offers an introduction into projective geometry. The first part presents n-dimensional projective geometry over an arbitrary skew field; the real, the complex, and the quaternionic geometries are the central topics, finite geometries playing only a minor part. The second deals with classical linear and projective groups and the associated geometries. The final section summarizes selected results and problems from the geometry of transformation groups.

Perspectives on Projective Geometry

Perspectives on Projective Geometry PDF Author: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
ISBN: 3642172865
Category : Mathematics
Languages : en
Pages : 573

Book Description
Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Geometries

Geometries PDF Author: Alekseĭ Bronislavovich Sosinskiĭ
Publisher: American Mathematical Soc.
ISBN: 082187571X
Category : Mathematics
Languages : en
Pages : 322

Book Description
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.

Geometries and Transformations

Geometries and Transformations PDF Author: Norman W. Johnson
Publisher: Cambridge University Press
ISBN: 1107103401
Category : Mathematics
Languages : en
Pages : 455

Book Description
A readable exposition of how Euclidean and other geometries can be distinguished using linear algebra and transformation groups.

Non-Euclidean Laguerre Geometry and Incircular Nets

Non-Euclidean Laguerre Geometry and Incircular Nets PDF Author: Alexander I. Bobenko
Publisher: Springer Nature
ISBN: 3030818470
Category : Mathematics
Languages : en
Pages : 142

Book Description
This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets. Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets.

Classical Geometry

Classical Geometry PDF Author: I. E. Leonard
Publisher: John Wiley & Sons
ISBN: 1118679148
Category : Mathematics
Languages : en
Pages : 501

Book Description
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.

Projective and Polar Spaces

Projective and Polar Spaces PDF Author: Peter Jephson Cameron
Publisher:
ISBN:
Category : Geometry, Affine
Languages : en
Pages : 162

Book Description


Lectures on Geometry

Lectures on Geometry PDF Author: Lucian Bădescu
Publisher: Springer Nature
ISBN: 3031514149
Category :
Languages : en
Pages : 493

Book Description


From Riemann to Differential Geometry and Relativity

From Riemann to Differential Geometry and Relativity PDF Author: Lizhen Ji
Publisher: Springer
ISBN: 3319600397
Category : Mathematics
Languages : en
Pages : 664

Book Description
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.

Complex Numbers in Geometry

Complex Numbers in Geometry PDF Author: I. M. Yaglom
Publisher: Academic Press
ISBN: 148326663X
Category : Mathematics
Languages : en
Pages : 256

Book Description
Complex Numbers in Geometry focuses on the principles, interrelations, and applications of geometry and algebra. The book first offers information on the types and geometrical interpretation of complex numbers. Topics include interpretation of ordinary complex numbers in the Lobachevskii plane; double numbers as oriented lines of the Lobachevskii plane; dual numbers as oriented lines of a plane; most general complex numbers; and double, hypercomplex, and dual numbers. The text then takes a look at circular transformations and circular geometry, including ordinary circular transformations, axial circular transformations of the Lobachevskii plane, circular transformations of the Lobachevskii plane, axial circular transformations, and ordinary circular transformations. The manuscript is intended for pupils in high schools and students in the mathematics departments of universities and teachers' colleges. The publication is also useful in the work of mathematical societies and teachers of mathematics in junior high and high schools.