Progress Toward Ignition at the National Ignition Facility PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Progress Toward Ignition at the National Ignition Facility PDF full book. Access full book title Progress Toward Ignition at the National Ignition Facility by . Download full books in PDF and EPUB format.

Progress Toward Ignition at the National Ignition Facility

Progress Toward Ignition at the National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Book Description


Progress Toward Ignition at the National Ignition Facility

Progress Toward Ignition at the National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Book Description


Progress Towards Inertial Confinement Fusion Ignition on the National Ignition Facility

Progress Towards Inertial Confinement Fusion Ignition on the National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Book Description


Progress on the National Ignition Facility

Progress on the National Ignition Facility PDF Author: E. Moses
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Book Description
The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at LLNL. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for performing experiments for Inertial Confinement Fusion (ICF) and High Energy Density Science (HEDS). The Project, begun in 1995, is over 80% complete. The building and the beam path are essentially complete. Nearly all of the functionality of the laser subsystems has been demonstrated. NIF has demonstrated on a single beam basis that it meets its performance goals and shown the laser's precision and flexibility for pulse shaping, pointing, and timing. Beam conditioning techniques, important for target performance, were also demonstrated. The focal spot can be tailored to user specifications using phase plates. Temporal smoothing using smoothing by spectral dispersion (SSD) as well as polarization smoothing was demonstrated. The remaining work is mostly to complete the optics and install them in the beam path and complete the utilities. Presently, eight beams have been activated through the amplifiers and spatial filters to the switchyard wall. Over 150 kJ of 1 {omega} light has been produced with just 4% of the NIF capacity activated. The Project is scheduled for completion in 2009 and plans have been developed to begin ignition experiments in 2010. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

Progress on the Physics of Ignition for Radiation Driven Inertial Confinement Fusion (ICF) Targets

Progress on the Physics of Ignition for Radiation Driven Inertial Confinement Fusion (ICF) Targets PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Extensive modeling of proposed National Ignition Facility (NIF) ignition targets has resulted in a variety of targets using different materials in the fuel shell, using driving temperatures which range from 250-300 eV, and requiring energies from

The National Ignition Facility and the Promise of Inertial Fusion Energy

The National Ignition Facility and the Promise of Inertial Fusion Energy PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm3-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

Assessment of Inertial Confinement Fusion Targets

Assessment of Inertial Confinement Fusion Targets PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309270626
Category : Science
Languages : en
Pages : 119

Book Description
In the fall of 2010, the Office of the U.S. Department of Energy's (DOE's) Secretary for Science asked for a National Research Council (NRC) committee to investigate the prospects for generating power using inertial confinement fusion (ICF) concepts, acknowledging that a key test of viability for this concept-ignition -could be demonstrated at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in the relatively near term. The committee was asked to provide an unclassified report. However, DOE indicated that to fully assess this topic, the committee's deliberations would have to be informed by the results of some classified experiments and information, particularly in the area of ICF targets and nonproliferation. Thus, the Panel on the Assessment of Inertial Confinement Fusion Targets ("the panel") was assembled, composed of experts able to access the needed information. The panel was charged with advising the Committee on the Prospects for Inertial Confinement Fusion Energy Systems on these issues, both by internal discussion and by this unclassified report. A Panel on Fusion Target Physics ("the panel") will serve as a technical resource to the Committee on Inertial Confinement Energy Systems ("the Committee") and will prepare a report that describes the R&D challenges to providing suitable targets, on the basis of parameters established and provided to the Panel by the Committee. The Panel on Fusion Target Physics will prepare a report that will assess the current performance of fusion targets associated with various ICF concepts in order to understand: 1. The spectrum output; 2. The illumination geometry; 3. The high-gain geometry; and 4. The robustness of the target design. The panel addressed the potential impacts of the use and development of current concepts for Inertial Fusion Energy on the proliferation of nuclear weapons information and technology, as appropriate. The Panel examined technology options, but does not provide recommendations specific to any currently operating or proposed ICF facility.

108-2 Hearings: Energy And Water Development Appropriations For 2005, Part 4A, February 2004, *

108-2 Hearings: Energy And Water Development Appropriations For 2005, Part 4A, February 2004, * PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 1306

Book Description


An Assessment of the Prospects for Inertial Fusion Energy

An Assessment of the Prospects for Inertial Fusion Energy PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309270812
Category : Science
Languages : en
Pages : 247

Book Description
The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.

Conceptual Design of the National Ignition Facility

Conceptual Design of the National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35[mu]m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program's site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately$1.1 billion and will be completed at the end of FY 2002.

Fusion

Fusion PDF Author: Garry McCracken
Publisher: Academic Press
ISBN: 0123846560
Category : Science
Languages : en
Pages : 249

Book Description
"Offers scientists and researchers the scientific basics, up-to-date current research, technical developments, and practical applications needed in fusion energy research/"--pub. desc.