Author: Markus Heydenreich
Publisher: Springer
ISBN: 3319624733
Category : Mathematics
Languages : en
Pages : 285
Book Description
This text presents an engaging exposition of the active field of high-dimensional percolation that will likely provide an impetus for future work. With over 90 exercises designed to enhance the reader’s understanding of the material, as well as many open problems, the book is aimed at graduate students and researchers who wish to enter the world of this rich topic. The text may also be useful in advanced courses and seminars, as well as for reference and individual study. Part I, consisting of 3 chapters, presents a general introduction to percolation, stating the main results, defining the central objects, and proving its main properties. No prior knowledge of percolation is assumed. Part II, consisting of Chapters 4–9, discusses mean-field critical behavior by describing the two main techniques used, namely, differential inequalities and the lace expansion. In Parts I and II, all results are proved, making this the first self-contained text discussing high-dime nsional percolation. Part III, consisting of Chapters 10–13, describes recent progress in high-dimensional percolation. Partial proofs and substantial overviews of how the proofs are obtained are given. In many of these results, the lace expansion and differential inequalities or their discrete analogues are central. Part IV, consisting of Chapters 14–16, features related models and further open problems, with a focus on the big picture.
Progress in High-Dimensional Percolation and Random Graphs
Author: Markus Heydenreich
Publisher: Springer
ISBN: 3319624733
Category : Mathematics
Languages : en
Pages : 285
Book Description
This text presents an engaging exposition of the active field of high-dimensional percolation that will likely provide an impetus for future work. With over 90 exercises designed to enhance the reader’s understanding of the material, as well as many open problems, the book is aimed at graduate students and researchers who wish to enter the world of this rich topic. The text may also be useful in advanced courses and seminars, as well as for reference and individual study. Part I, consisting of 3 chapters, presents a general introduction to percolation, stating the main results, defining the central objects, and proving its main properties. No prior knowledge of percolation is assumed. Part II, consisting of Chapters 4–9, discusses mean-field critical behavior by describing the two main techniques used, namely, differential inequalities and the lace expansion. In Parts I and II, all results are proved, making this the first self-contained text discussing high-dime nsional percolation. Part III, consisting of Chapters 10–13, describes recent progress in high-dimensional percolation. Partial proofs and substantial overviews of how the proofs are obtained are given. In many of these results, the lace expansion and differential inequalities or their discrete analogues are central. Part IV, consisting of Chapters 14–16, features related models and further open problems, with a focus on the big picture.
Publisher: Springer
ISBN: 3319624733
Category : Mathematics
Languages : en
Pages : 285
Book Description
This text presents an engaging exposition of the active field of high-dimensional percolation that will likely provide an impetus for future work. With over 90 exercises designed to enhance the reader’s understanding of the material, as well as many open problems, the book is aimed at graduate students and researchers who wish to enter the world of this rich topic. The text may also be useful in advanced courses and seminars, as well as for reference and individual study. Part I, consisting of 3 chapters, presents a general introduction to percolation, stating the main results, defining the central objects, and proving its main properties. No prior knowledge of percolation is assumed. Part II, consisting of Chapters 4–9, discusses mean-field critical behavior by describing the two main techniques used, namely, differential inequalities and the lace expansion. In Parts I and II, all results are proved, making this the first self-contained text discussing high-dime nsional percolation. Part III, consisting of Chapters 10–13, describes recent progress in high-dimensional percolation. Partial proofs and substantial overviews of how the proofs are obtained are given. In many of these results, the lace expansion and differential inequalities or their discrete analogues are central. Part IV, consisting of Chapters 14–16, features related models and further open problems, with a focus on the big picture.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Fractal Geometry and Stochastics VI
Author: Uta Freiberg
Publisher: Springer Nature
ISBN: 3030596494
Category : Mathematics
Languages : en
Pages : 307
Book Description
This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.
Publisher: Springer Nature
ISBN: 3030596494
Category : Mathematics
Languages : en
Pages : 307
Book Description
This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.
Probability on Graphs
Author: Geoffrey Grimmett
Publisher: Cambridge University Press
ISBN: 1108542999
Category : Mathematics
Languages : en
Pages : 279
Book Description
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.
Publisher: Cambridge University Press
ISBN: 1108542999
Category : Mathematics
Languages : en
Pages : 279
Book Description
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.
The Random-Cluster Model
Author: Geoffrey R. Grimmett
Publisher: Springer Science & Business Media
ISBN: 3540328912
Category : Mathematics
Languages : en
Pages : 392
Book Description
The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.
Publisher: Springer Science & Business Media
ISBN: 3540328912
Category : Mathematics
Languages : en
Pages : 392
Book Description
The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.
In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius
Author: Maria Eulália Vares
Publisher: Springer Nature
ISBN: 3030607542
Category : Mathematics
Languages : en
Pages : 819
Book Description
This is a volume in memory of Vladas Sidoravicius who passed away in 2019. Vladas has edited two volumes appeared in this series ("In and Out of Equilibrium") and is now honored by friends and colleagues with research papers reflecting Vladas' interests and contributions to probability theory.
Publisher: Springer Nature
ISBN: 3030607542
Category : Mathematics
Languages : en
Pages : 819
Book Description
This is a volume in memory of Vladas Sidoravicius who passed away in 2019. Vladas has edited two volumes appeared in this series ("In and Out of Equilibrium") and is now honored by friends and colleagues with research papers reflecting Vladas' interests and contributions to probability theory.
Sojourns in Probability Theory and Statistical Physics - I
Author: Vladas Sidoravicius
Publisher: Springer Nature
ISBN: 9811502943
Category : Mathematics
Languages : en
Pages : 348
Book Description
Charles M. (Chuck) Newman has been a leader in Probability Theory and Statistical Physics for nearly half a century. This three-volume set is a celebration of the far-reaching scientific impact of his work. It consists of articles by Chuck’s collaborators and colleagues across a number of the fields to which he has made contributions of fundamental significance. This publication was conceived during a conference in 2016 at NYU Shanghai that coincided with Chuck's 70th birthday. The sub-titles of the three volumes are: I. Spin Glasses and Statistical Mechanics II. Brownian Web and Percolation III. Interacting Particle Systems and Random Walks The articles in these volumes, which cover a wide spectrum of topics, will be especially useful for graduate students and researchers who seek initiation and inspiration in Probability Theory and Statistical Physics.
Publisher: Springer Nature
ISBN: 9811502943
Category : Mathematics
Languages : en
Pages : 348
Book Description
Charles M. (Chuck) Newman has been a leader in Probability Theory and Statistical Physics for nearly half a century. This three-volume set is a celebration of the far-reaching scientific impact of his work. It consists of articles by Chuck’s collaborators and colleagues across a number of the fields to which he has made contributions of fundamental significance. This publication was conceived during a conference in 2016 at NYU Shanghai that coincided with Chuck's 70th birthday. The sub-titles of the three volumes are: I. Spin Glasses and Statistical Mechanics II. Brownian Web and Percolation III. Interacting Particle Systems and Random Walks The articles in these volumes, which cover a wide spectrum of topics, will be especially useful for graduate students and researchers who seek initiation and inspiration in Probability Theory and Statistical Physics.
Introduction to Random Graphs
Author: Alan Frieze
Publisher: Cambridge University Press
ISBN: 1107118506
Category : Mathematics
Languages : en
Pages : 483
Book Description
The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.
Publisher: Cambridge University Press
ISBN: 1107118506
Category : Mathematics
Languages : en
Pages : 483
Book Description
The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.
The Nature of Complex Networks
Author: Sergey N. Dorogovtsev
Publisher: Oxford University Press
ISBN: 0199695113
Category : Graph theory
Languages : en
Pages : 481
Book Description
The Nature of Complex Networks provides a systematic introduction to the statistical mechanics of complex networks and the different theoretical achievements in the field that are now finding strands in common.The book presents a wide range of networks and the processes taking place on them, including recently developed directions, methods, and techniques. It assumes a statistical mechanics view of random networks based on the concept of statistical ensembles but also features the approaches and methodsof modern random graph theory and their overlaps with statistical physics.This book will appeal to graduate students and researchers in the fields of statistical physics, complex systems, graph theory, applied mathematics, and theoretical epidemiology.
Publisher: Oxford University Press
ISBN: 0199695113
Category : Graph theory
Languages : en
Pages : 481
Book Description
The Nature of Complex Networks provides a systematic introduction to the statistical mechanics of complex networks and the different theoretical achievements in the field that are now finding strands in common.The book presents a wide range of networks and the processes taking place on them, including recently developed directions, methods, and techniques. It assumes a statistical mechanics view of random networks based on the concept of statistical ensembles but also features the approaches and methodsof modern random graph theory and their overlaps with statistical physics.This book will appeal to graduate students and researchers in the fields of statistical physics, complex systems, graph theory, applied mathematics, and theoretical epidemiology.
Random Graphs and Complex Networks
Author: Remco van der Hofstad
Publisher: Cambridge University Press
ISBN: 110717287X
Category : Computers
Languages : en
Pages : 341
Book Description
This classroom-tested text is the definitive introduction to the mathematics of network science, featuring examples and numerous exercises.
Publisher: Cambridge University Press
ISBN: 110717287X
Category : Computers
Languages : en
Pages : 341
Book Description
This classroom-tested text is the definitive introduction to the mathematics of network science, featuring examples and numerous exercises.