Progress in Algebraic Combinatorics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Progress in Algebraic Combinatorics PDF full book. Access full book title Progress in Algebraic Combinatorics by Eiichi Bannai. Download full books in PDF and EPUB format.

Progress in Algebraic Combinatorics

Progress in Algebraic Combinatorics PDF Author: Eiichi Bannai
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 478

Book Description
This volume consists of thirteen papers on algebraic combinatorics and related areas written by leading experts around the world. There are four survey papers illustrating the following currently active branches of algebraic combinatorics: vertex operator algebras, spherical designs, Kerdock codes and related combinatorial objects, and geometry of matrices. The remaining nine papers are original research articles covering a wide range of disciplines, from classical topics such as permutation groups and finite geometry, to modern topics such as spin models and invariants of 3-manifolds. Two papers occupy nearly half the volume and present a comprehensive account of new concepts: ``Combinatorial Cell Complexes'' by M. Aschbacher and ``Quantum Matroids'' by P. Terwilliger. Terwilliger's theory of quantum matroids unites a part of the theory of finite geometries and a part of the theory of distance-regular graphs--great progess is expected in this field. K. Nomura's paper bridges the classical and the modern by establishing a connection between certain bipartite distance-regular graphs and spin models. All contributors to this volume were invited speakers at the conference ``Algebraic Combinatorics'' in Fukuoka, Japan (1993) and participated in the Research Institute in the Mathematical Sciences (RIMS) research project on algebraic combinatorics held at Kyoto University in 1994.

Progress in Algebraic Combinatorics

Progress in Algebraic Combinatorics PDF Author: Eiichi Bannai
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 478

Book Description
This volume consists of thirteen papers on algebraic combinatorics and related areas written by leading experts around the world. There are four survey papers illustrating the following currently active branches of algebraic combinatorics: vertex operator algebras, spherical designs, Kerdock codes and related combinatorial objects, and geometry of matrices. The remaining nine papers are original research articles covering a wide range of disciplines, from classical topics such as permutation groups and finite geometry, to modern topics such as spin models and invariants of 3-manifolds. Two papers occupy nearly half the volume and present a comprehensive account of new concepts: ``Combinatorial Cell Complexes'' by M. Aschbacher and ``Quantum Matroids'' by P. Terwilliger. Terwilliger's theory of quantum matroids unites a part of the theory of finite geometries and a part of the theory of distance-regular graphs--great progess is expected in this field. K. Nomura's paper bridges the classical and the modern by establishing a connection between certain bipartite distance-regular graphs and spin models. All contributors to this volume were invited speakers at the conference ``Algebraic Combinatorics'' in Fukuoka, Japan (1993) and participated in the Research Institute in the Mathematical Sciences (RIMS) research project on algebraic combinatorics held at Kyoto University in 1994.

Combinatorics and Commutative Algebra

Combinatorics and Commutative Algebra PDF Author: Richard P. Stanley
Publisher: Springer Science & Business Media
ISBN: 0817643699
Category : Mathematics
Languages : en
Pages : 173

Book Description
* Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra: 1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics

Advances in Algebra and Combinatorics

Advances in Algebra and Combinatorics PDF Author: K. P. Shum
Publisher: World Scientific
ISBN: 9812790004
Category : Mathematics
Languages : en
Pages : 384

Book Description
This volume is a compilation of lectures on algebras and combinatorics presented at the Second International Congress in Algebra and Combinatorics. It reports on not only new results, but also on open problems in the field. The proceedings volume is useful for graduate students and researchers in algebras and combinatorics. Contributors include eminent figures such as V Artamanov, L Bokut, J Fountain, P Hilton, M Jambu, P Kolesnikov, Li Wei and K Ueno.

New Perspectives in Algebraic Combinatorics

New Perspectives in Algebraic Combinatorics PDF Author: Louis J. Billera
Publisher: Cambridge University Press
ISBN: 9780521770873
Category : Mathematics
Languages : en
Pages : 360

Book Description
This text contains expository contributions by respected researchers on the connections between algebraic geometry, topology, commutative algebra, representation theory, and convex geometry.

Algebraic Combinatorics

Algebraic Combinatorics PDF Author: Richard P. Stanley
Publisher: Springer
ISBN: 3319771736
Category : Mathematics
Languages : en
Pages : 268

Book Description
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound understanding to mathematical, engineering, and business models. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and rudiments of group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix-Tree Theorem, de Bruijn sequences, the Erdős–Moser conjecture, electrical networks, the Sperner property, shellability of simplicial complexes and face rings. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. The new edition contains a bit more content than intended for a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Instructors may pick and choose chapters/sections for course inclusion and students can immerse themselves in exploring additional gems once the course has ended. A chapter on combinatorial commutative algebra (Chapter 12) is the heart of added material in this new edition. The author gives substantial application without requisites needed for algebraic topology and homological algebra. A sprinkling of additional exercises and a new section (13.8) involving commutative algebra, have been added. From reviews of the first edition: “This gentle book provides the perfect stepping-stone up. The various chapters treat diverse topics ... . Stanley’s emphasis on ‘gems’ unites all this —he chooses his material to excite students and draw them into further study. ... Summing Up: Highly recommended. Upper-division undergraduates and above.” —D. V. Feldman, Choice, Vol. 51(8), April, 2014

Algebraic Combinatorics

Algebraic Combinatorics PDF Author: Eiichi Bannai
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110630257
Category : Mathematics
Languages : en
Pages : 444

Book Description
Algebraic combinatorics is the study of combinatorial objects as an extension of the study of finite permutation groups, or, in other words, group theory without groups. In the spirit of Delsarte's theory, this book studies combinatorial objects such as graphs, codes, designs, etc. in the general framework of association schemes, providing a comprehensive overview of the theory as well as pointing out to extensions.

Open Problems in Algebraic Combinatorics

Open Problems in Algebraic Combinatorics PDF Author: Christine Berkesch
Publisher: American Mathematical Society
ISBN: 147047333X
Category : Mathematics
Languages : en
Pages : 382

Book Description
In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.

Combinatorial Commutative Algebra

Combinatorial Commutative Algebra PDF Author: Ezra Miller
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442

Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs

Algebraic Combinatorics

Algebraic Combinatorics PDF Author: Richard P. Stanley
Publisher: Springer Science & Business Media
ISBN: 1461469988
Category : Mathematics
Languages : en
Pages : 226

Book Description
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.

Algebraic Combinatorics

Algebraic Combinatorics PDF Author: Peter Orlik
Publisher: Springer Science & Business Media
ISBN: 3540683763
Category : Mathematics
Languages : en
Pages : 182

Book Description
This book is based on two series of lectures given at a summer school on algebraic combinatorics at the Sophus Lie Centre in Nordfjordeid, Norway, in June 2003, one by Peter Orlik on hyperplane arrangements, and the other one by Volkmar Welker on free resolutions. Both topics are essential parts of current research in a variety of mathematical fields, and the present book makes these sophisticated tools available for graduate students.