Author: Amrinder Arora
Publisher:
ISBN: 9781793520432
Category :
Languages : en
Pages : 184
Book Description
Analysis and Design of Algorithms provides a structured view of algorithm design techniques in a concise, easy-to-read manner. The book was written with an express purpose of being easy - to understand, read, and carry. It presents a pioneering approach in the teaching of algorithms, based on learning algorithm design techniques, and not merely solving a collection of problems. This allows students to master one design technique at a time and apply it to a rich variety of problems. Analysis and Design of Algorithms covers the algorithmic design techniques of divide and conquer, greedy, dynamic programming, branch and bound, and graph traversal. For each of these techniques, there are templates and guidelines on when to use and not to use each technique. Many sections contain innovative mnemonics to aid the readers in remembering the templates and key takeaways. Additionally, the book covers NP-completeness and the inherent hardness of problems. The third edition includes a new section on polynomial multiplication, as well as additional exercise problems, and an updated appendix. Written with input from students and professionals, Analysis and Design of Algorithms is well suited for introductory algorithm courses at the undergraduate and graduate levels. The structured organization of the text makes it especially appropriate for online and distance learning.
Analysis and Design of Algorithms
Author: Amrinder Arora
Publisher:
ISBN: 9781793520432
Category :
Languages : en
Pages : 184
Book Description
Analysis and Design of Algorithms provides a structured view of algorithm design techniques in a concise, easy-to-read manner. The book was written with an express purpose of being easy - to understand, read, and carry. It presents a pioneering approach in the teaching of algorithms, based on learning algorithm design techniques, and not merely solving a collection of problems. This allows students to master one design technique at a time and apply it to a rich variety of problems. Analysis and Design of Algorithms covers the algorithmic design techniques of divide and conquer, greedy, dynamic programming, branch and bound, and graph traversal. For each of these techniques, there are templates and guidelines on when to use and not to use each technique. Many sections contain innovative mnemonics to aid the readers in remembering the templates and key takeaways. Additionally, the book covers NP-completeness and the inherent hardness of problems. The third edition includes a new section on polynomial multiplication, as well as additional exercise problems, and an updated appendix. Written with input from students and professionals, Analysis and Design of Algorithms is well suited for introductory algorithm courses at the undergraduate and graduate levels. The structured organization of the text makes it especially appropriate for online and distance learning.
Publisher:
ISBN: 9781793520432
Category :
Languages : en
Pages : 184
Book Description
Analysis and Design of Algorithms provides a structured view of algorithm design techniques in a concise, easy-to-read manner. The book was written with an express purpose of being easy - to understand, read, and carry. It presents a pioneering approach in the teaching of algorithms, based on learning algorithm design techniques, and not merely solving a collection of problems. This allows students to master one design technique at a time and apply it to a rich variety of problems. Analysis and Design of Algorithms covers the algorithmic design techniques of divide and conquer, greedy, dynamic programming, branch and bound, and graph traversal. For each of these techniques, there are templates and guidelines on when to use and not to use each technique. Many sections contain innovative mnemonics to aid the readers in remembering the templates and key takeaways. Additionally, the book covers NP-completeness and the inherent hardness of problems. The third edition includes a new section on polynomial multiplication, as well as additional exercise problems, and an updated appendix. Written with input from students and professionals, Analysis and Design of Algorithms is well suited for introductory algorithm courses at the undergraduate and graduate levels. The structured organization of the text makes it especially appropriate for online and distance learning.
The Design and Analysis of Algorithms
Author: Dexter C. Kozen
Publisher: Springer Science & Business Media
ISBN: 1461244005
Category : Computers
Languages : en
Pages : 327
Book Description
These are my lecture notes from CS681: Design and Analysis of Algo rithms, a one-semester graduate course I taught at Cornell for three consec utive fall semesters from '88 to '90. The course serves a dual purpose: to cover core material in algorithms for graduate students in computer science preparing for their PhD qualifying exams, and to introduce theory students to some advanced topics in the design and analysis of algorithms. The material is thus a mixture of core and advanced topics. At first I meant these notes to supplement and not supplant a textbook, but over the three years they gradually took on a life of their own. In addition to the notes, I depended heavily on the texts • A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wesley, 1975. • M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness. w. H. Freeman, 1979. • R. E. Tarjan, Data Structures and Network Algorithms. SIAM Regional Conference Series in Applied Mathematics 44, 1983. and still recommend them as excellent references.
Publisher: Springer Science & Business Media
ISBN: 1461244005
Category : Computers
Languages : en
Pages : 327
Book Description
These are my lecture notes from CS681: Design and Analysis of Algo rithms, a one-semester graduate course I taught at Cornell for three consec utive fall semesters from '88 to '90. The course serves a dual purpose: to cover core material in algorithms for graduate students in computer science preparing for their PhD qualifying exams, and to introduce theory students to some advanced topics in the design and analysis of algorithms. The material is thus a mixture of core and advanced topics. At first I meant these notes to supplement and not supplant a textbook, but over the three years they gradually took on a life of their own. In addition to the notes, I depended heavily on the texts • A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wesley, 1975. • M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness. w. H. Freeman, 1979. • R. E. Tarjan, Data Structures and Network Algorithms. SIAM Regional Conference Series in Applied Mathematics 44, 1983. and still recommend them as excellent references.
Algorithmic Puzzles
Author: Anany Levitin
Publisher: OUP USA
ISBN: 0199740445
Category : Computers
Languages : en
Pages : 280
Book Description
Algorithmic puzzles are puzzles involving well-defined procedures for solving problems. This book will provide an enjoyable and accessible introduction to algorithmic puzzles that will develop the reader's algorithmic thinking. The first part of this book is a tutorial on algorithm design strategies and analysis techniques. Algorithm design strategies — exhaustive search, backtracking, divide-and-conquer and a few others — are general approaches to designing step-by-step instructions for solving problems. Analysis techniques are methods for investigating such procedures to answer questions about the ultimate result of the procedure or how many steps are executed before the procedure stops. The discussion is an elementary level, with puzzle examples, and requires neither programming nor mathematics beyond a secondary school level. Thus, the tutorial provides a gentle and entertaining introduction to main ideas in high-level algorithmic problem solving. The second and main part of the book contains 150 puzzles, from centuries-old classics to newcomers often asked during job interviews at computing, engineering, and financial companies. The puzzles are divided into three groups by their difficulty levels. The first fifty puzzles in the Easier Puzzles section require only middle school mathematics. The sixty puzzle of average difficulty and forty harder puzzles require just high school mathematics plus a few topics such as binary numbers and simple recurrences, which are reviewed in the tutorial. All the puzzles are provided with hints, detailed solutions, and brief comments. The comments deal with the puzzle origins and design or analysis techniques used in the solution. The book should be of interest to puzzle lovers, students and teachers of algorithm courses, and persons expecting to be given puzzles during job interviews.
Publisher: OUP USA
ISBN: 0199740445
Category : Computers
Languages : en
Pages : 280
Book Description
Algorithmic puzzles are puzzles involving well-defined procedures for solving problems. This book will provide an enjoyable and accessible introduction to algorithmic puzzles that will develop the reader's algorithmic thinking. The first part of this book is a tutorial on algorithm design strategies and analysis techniques. Algorithm design strategies — exhaustive search, backtracking, divide-and-conquer and a few others — are general approaches to designing step-by-step instructions for solving problems. Analysis techniques are methods for investigating such procedures to answer questions about the ultimate result of the procedure or how many steps are executed before the procedure stops. The discussion is an elementary level, with puzzle examples, and requires neither programming nor mathematics beyond a secondary school level. Thus, the tutorial provides a gentle and entertaining introduction to main ideas in high-level algorithmic problem solving. The second and main part of the book contains 150 puzzles, from centuries-old classics to newcomers often asked during job interviews at computing, engineering, and financial companies. The puzzles are divided into three groups by their difficulty levels. The first fifty puzzles in the Easier Puzzles section require only middle school mathematics. The sixty puzzle of average difficulty and forty harder puzzles require just high school mathematics plus a few topics such as binary numbers and simple recurrences, which are reviewed in the tutorial. All the puzzles are provided with hints, detailed solutions, and brief comments. The comments deal with the puzzle origins and design or analysis techniques used in the solution. The book should be of interest to puzzle lovers, students and teachers of algorithm courses, and persons expecting to be given puzzles during job interviews.
Algorithms, Part II
Author: Robert Sedgewick
Publisher: Addison-Wesley Professional
ISBN: 0133847268
Category : Computers
Languages : en
Pages : 973
Book Description
This book is Part II of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part II contains Chapters 4 through 6 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.
Publisher: Addison-Wesley Professional
ISBN: 0133847268
Category : Computers
Languages : en
Pages : 973
Book Description
This book is Part II of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part II contains Chapters 4 through 6 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.
Design and Analysis of Algorithms
Author: Sandeep Sen
Publisher: Cambridge University Press
ISBN: 1108496822
Category : Computers
Languages : en
Pages : 395
Book Description
Focuses on the interplay between algorithm design and the underlying computational models.
Publisher: Cambridge University Press
ISBN: 1108496822
Category : Computers
Languages : en
Pages : 395
Book Description
Focuses on the interplay between algorithm design and the underlying computational models.
The Algorithm Design Manual
Author: Steven S Skiena
Publisher: Springer Science & Business Media
ISBN: 1848000707
Category : Computers
Languages : en
Pages : 742
Book Description
This newly expanded and updated second edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW "war stories" relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java
Publisher: Springer Science & Business Media
ISBN: 1848000707
Category : Computers
Languages : en
Pages : 742
Book Description
This newly expanded and updated second edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW "war stories" relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java
Data Structures and Network Algorithms
Author: Robert Endre Tarjan
Publisher: SIAM
ISBN: 9781611970265
Category : Technology & Engineering
Languages : en
Pages : 138
Book Description
There has been an explosive growth in the field of combinatorial algorithms. These algorithms depend not only on results in combinatorics and especially in graph theory, but also on the development of new data structures and new techniques for analyzing algorithms. Four classical problems in network optimization are covered in detail, including a development of the data structures they use and an analysis of their running time. Data Structures and Network Algorithms attempts to provide the reader with both a practical understanding of the algorithms, described to facilitate their easy implementation, and an appreciation of the depth and beauty of the field of graph algorithms.
Publisher: SIAM
ISBN: 9781611970265
Category : Technology & Engineering
Languages : en
Pages : 138
Book Description
There has been an explosive growth in the field of combinatorial algorithms. These algorithms depend not only on results in combinatorics and especially in graph theory, but also on the development of new data structures and new techniques for analyzing algorithms. Four classical problems in network optimization are covered in detail, including a development of the data structures they use and an analysis of their running time. Data Structures and Network Algorithms attempts to provide the reader with both a practical understanding of the algorithms, described to facilitate their easy implementation, and an appreciation of the depth and beauty of the field of graph algorithms.
Algorithms
Author: Harsh Bhasin
Publisher: Oxford University Press, USA
ISBN: 9780199456666
Category : Mathematics
Languages : en
Pages : 0
Book Description
Algorithms: Design and Analysis is a textbook designed for undergraduate and postgraduate students of computer science engineering, information technology, and computer applications. The book offers adequate mix of both theoretical and mathematical treatment of the concepts. It covers the basics, design techniques, advanced topics and applications of algorithms. The book will also serve as a useful reference for researchers and practising programmers whointend to pursue a career in algorithm designing. The book is also indented for students preparing for campus interviews and competitive examinations.
Publisher: Oxford University Press, USA
ISBN: 9780199456666
Category : Mathematics
Languages : en
Pages : 0
Book Description
Algorithms: Design and Analysis is a textbook designed for undergraduate and postgraduate students of computer science engineering, information technology, and computer applications. The book offers adequate mix of both theoretical and mathematical treatment of the concepts. It covers the basics, design techniques, advanced topics and applications of algorithms. The book will also serve as a useful reference for researchers and practising programmers whointend to pursue a career in algorithm designing. The book is also indented for students preparing for campus interviews and competitive examinations.
Design and Analysis of Randomized Algorithms
Author: J. Hromkovic
Publisher: Springer Science & Business Media
ISBN: 3540279032
Category : Computers
Languages : en
Pages : 280
Book Description
Systematically teaches key paradigmic algorithm design methods Provides a deep insight into randomization
Publisher: Springer Science & Business Media
ISBN: 3540279032
Category : Computers
Languages : en
Pages : 280
Book Description
Systematically teaches key paradigmic algorithm design methods Provides a deep insight into randomization
Grokking Deep Learning
Author: Andrew W. Trask
Publisher: Simon and Schuster
ISBN: 163835720X
Category : Computers
Languages : en
Pages : 475
Book Description
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide
Publisher: Simon and Schuster
ISBN: 163835720X
Category : Computers
Languages : en
Pages : 475
Book Description
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide