Author:
Publisher:
ISBN:
Category : Computer science
Languages : en
Pages : 316
Book Description
Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
Handbook of Massive Data Sets
Author: James Abello
Publisher: Springer
ISBN: 1461500052
Category : Computers
Languages : en
Pages : 1209
Book Description
The proliferation of massive data sets brings with it a series of special computational challenges. This "data avalanche" arises in a wide range of scientific and commercial applications. With advances in computer and information technologies, many of these challenges are beginning to be addressed by diverse inter-disciplinary groups, that indude computer scientists, mathematicians, statisticians and engineers, working in dose cooperation with application domain experts. High profile applications indude astrophysics, bio-technology, demographics, finance, geographi cal information systems, government, medicine, telecommunications, the environment and the internet. John R. Tucker of the Board on Mathe matical Seiences has stated: "My interest in this problern (Massive Data Sets) isthat I see it as the rnost irnportant cross-cutting problern for the rnathernatical sciences in practical problern solving for the next decade, because it is so pervasive. " The Handbook of Massive Data Sets is comprised of articles writ ten by experts on selected topics that deal with some major aspect of massive data sets. It contains chapters on information retrieval both in the internet and in the traditional sense, web crawlers, massive graphs, string processing, data compression, dustering methods, wavelets, op timization, external memory algorithms and data structures, the US national duster project, high performance computing, data warehouses, data cubes, semi-structured data, data squashing, data quality, billing in the large, fraud detection, and data processing in astrophysics, air pollution, biomolecular data, earth observation and the environment.
Publisher: Springer
ISBN: 1461500052
Category : Computers
Languages : en
Pages : 1209
Book Description
The proliferation of massive data sets brings with it a series of special computational challenges. This "data avalanche" arises in a wide range of scientific and commercial applications. With advances in computer and information technologies, many of these challenges are beginning to be addressed by diverse inter-disciplinary groups, that indude computer scientists, mathematicians, statisticians and engineers, working in dose cooperation with application domain experts. High profile applications indude astrophysics, bio-technology, demographics, finance, geographi cal information systems, government, medicine, telecommunications, the environment and the internet. John R. Tucker of the Board on Mathe matical Seiences has stated: "My interest in this problern (Massive Data Sets) isthat I see it as the rnost irnportant cross-cutting problern for the rnathernatical sciences in practical problern solving for the next decade, because it is so pervasive. " The Handbook of Massive Data Sets is comprised of articles writ ten by experts on selected topics that deal with some major aspect of massive data sets. It contains chapters on information retrieval both in the internet and in the traditional sense, web crawlers, massive graphs, string processing, data compression, dustering methods, wavelets, op timization, external memory algorithms and data structures, the US national duster project, high performance computing, data warehouses, data cubes, semi-structured data, data squashing, data quality, billing in the large, fraud detection, and data processing in astrophysics, air pollution, biomolecular data, earth observation and the environment.
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
Author: ACM Special Interest Group for Algorithms and Computation Theory
Publisher:
ISBN:
Category : Computer science
Languages : en
Pages : 300
Book Description
Publisher:
ISBN:
Category : Computer science
Languages : en
Pages : 300
Book Description
Data Stream Management
Author: Lukasz Golab
Publisher: Morgan & Claypool Publishers
ISBN: 1608452727
Category : Computers
Languages : en
Pages : 65
Book Description
In this lecture many applications process high volumes of streaming data, among them Internet traffic analysis, financial tickers, and transaction log mining. In general, a data stream is an unbounded data set that is produced incrementally over time, rather than being available in full before its processing begins. In this lecture, we give an overview of recent research in stream processing, ranging from answering simple queries on high-speed streams to loading real-time data feeds into a streaming warehouse for off-line analysis. We will discuss two types of systems for end-to-end stream processing: Data Stream Management Systems (DSMSs) and Streaming Data Warehouses (SDWs). A traditional database management system typically processes a stream of ad-hoc queries over relatively static data. In contrast, a DSMS evaluates static (long-running) queries on streaming data, making a single pass over the data and using limited working memory. In the first part of this lecture, we will discuss research problems in DSMSs, such as continuous query languages, non-blocking query operators that continually react to new data, and continuous query optimization. The second part covers SDWs, which combine the real-time response of a DSMS by loading new data as soon as they arrive with a data warehouse's ability to manage Terabytes of historical data on secondary storage. Table of Contents: Introduction / Data Stream Management Systems / Streaming Data Warehouses / Conclusions
Publisher: Morgan & Claypool Publishers
ISBN: 1608452727
Category : Computers
Languages : en
Pages : 65
Book Description
In this lecture many applications process high volumes of streaming data, among them Internet traffic analysis, financial tickers, and transaction log mining. In general, a data stream is an unbounded data set that is produced incrementally over time, rather than being available in full before its processing begins. In this lecture, we give an overview of recent research in stream processing, ranging from answering simple queries on high-speed streams to loading real-time data feeds into a streaming warehouse for off-line analysis. We will discuss two types of systems for end-to-end stream processing: Data Stream Management Systems (DSMSs) and Streaming Data Warehouses (SDWs). A traditional database management system typically processes a stream of ad-hoc queries over relatively static data. In contrast, a DSMS evaluates static (long-running) queries on streaming data, making a single pass over the data and using limited working memory. In the first part of this lecture, we will discuss research problems in DSMSs, such as continuous query languages, non-blocking query operators that continually react to new data, and continuous query optimization. The second part covers SDWs, which combine the real-time response of a DSMS by loading new data as soon as they arrive with a data warehouse's ability to manage Terabytes of historical data on secondary storage. Table of Contents: Introduction / Data Stream Management Systems / Streaming Data Warehouses / Conclusions
Probabilistic Databases
Author: Dan Suciu
Publisher: Morgan & Claypool Publishers
ISBN: 1608456803
Category : Computers
Languages : en
Pages : 183
Book Description
Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-k query processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases. Table of Contents: Overview / Data and Query Model / The Query Evaluation Problem / Extensional Query Evaluation / Intensional Query Evaluation / Advanced Techniques
Publisher: Morgan & Claypool Publishers
ISBN: 1608456803
Category : Computers
Languages : en
Pages : 183
Book Description
Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-k query processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases. Table of Contents: Overview / Data and Query Model / The Query Evaluation Problem / Extensional Query Evaluation / Intensional Query Evaluation / Advanced Techniques
Semantics in Data and Knowledge Bases
Author: Klaus-Dieter Schewe
Publisher: Springer Science & Business Media
ISBN: 3642234402
Category : Computers
Languages : en
Pages : 142
Book Description
This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Semantics in Data and Knowledge Bases, SDKB 2010, held in Bordeaux, France in July 2010. The 6 revised full papers presented together with an introductory survey by the volume editors were carefully reviewed and selected during two rounds of revision and improvement. The papers reflect a variety of approaches to semantics in data and knowledge bases.
Publisher: Springer Science & Business Media
ISBN: 3642234402
Category : Computers
Languages : en
Pages : 142
Book Description
This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Semantics in Data and Knowledge Bases, SDKB 2010, held in Bordeaux, France in July 2010. The 6 revised full papers presented together with an introductory survey by the volume editors were carefully reviewed and selected during two rounds of revision and improvement. The papers reflect a variety of approaches to semantics in data and knowledge bases.
Database System Implementation
Author: Garcia-Molina
Publisher: Pearson Education India
ISBN: 9788131704134
Category :
Languages : en
Pages : 676
Book Description
Publisher: Pearson Education India
ISBN: 9788131704134
Category :
Languages : en
Pages : 676
Book Description
Data on the Web
Author: Serge Abiteboul
Publisher: Morgan Kaufmann
ISBN: 9781558606227
Category : Computers
Languages : en
Pages : 280
Book Description
Data model. Queries. Types. Sysems. A syntax for data. XML.. Query languages. Query languages for XML. Interpretation and advanced features. Typing semistructured data. Query processing. The lore system. Strudel. Database products supporting XML. Bibliography. Index. About the authors.
Publisher: Morgan Kaufmann
ISBN: 9781558606227
Category : Computers
Languages : en
Pages : 280
Book Description
Data model. Queries. Types. Sysems. A syntax for data. XML.. Query languages. Query languages for XML. Interpretation and advanced features. Typing semistructured data. Query processing. The lore system. Strudel. Database products supporting XML. Bibliography. Index. About the authors.
Data Models, Database Languages and Database Management Systems
Author: Gottfried Vossen
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 616
Book Description
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 616
Book Description
Provenance in Databases
Author: James Cheney
Publisher: Now Publishers Inc
ISBN: 1601982321
Category : Computers
Languages : en
Pages : 111
Book Description
Reviews research over the past ten years on why, how, and where provenance, clarifies the relationships among these notions of provenance, and describes some of their applications in confidence computation, view maintenance and update, debugging, and annotation propagation
Publisher: Now Publishers Inc
ISBN: 1601982321
Category : Computers
Languages : en
Pages : 111
Book Description
Reviews research over the past ten years on why, how, and where provenance, clarifies the relationships among these notions of provenance, and describes some of their applications in confidence computation, view maintenance and update, debugging, and annotation propagation