Author: Victor Moshchalkov
Publisher: Springer Science & Business Media
ISBN: 364215137X
Category : Science
Languages : en
Pages : 407
Book Description
For emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the "elementary building blocks" through nanostructuring. For superconductivity the "elementary blocks" are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.
Nanoscience and Engineering in Superconductivity
Author: Victor Moshchalkov
Publisher: Springer Science & Business Media
ISBN: 364215137X
Category : Science
Languages : en
Pages : 407
Book Description
For emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the "elementary building blocks" through nanostructuring. For superconductivity the "elementary blocks" are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.
Publisher: Springer Science & Business Media
ISBN: 364215137X
Category : Science
Languages : en
Pages : 407
Book Description
For emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the "elementary building blocks" through nanostructuring. For superconductivity the "elementary blocks" are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.
Vortices and Nanostructured Superconductors
Author: Adrian Crisan
Publisher: Springer
ISBN: 3319593552
Category : Technology & Engineering
Languages : en
Pages : 266
Book Description
This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researchers survey the most exciting and important recent developments in the field. Topics covered include: the use of scanning Hall probe microscopy to visualize interactions of a single vortex with pinning centers; Magneto-Optical Imaging for investigating what vortex avalanches are, why they appear, and how they can be controlled; and the vortex interactions responsible for the second magnetization peak. Other chapters discuss nanoengineered pinning centers of vortices for improved current-carrying capabilities, current anisotropy in cryomagnetic devices in relation to the pinning landscape, and the new physics associated with the discovery of new superconducting materials with multi-component superconductivity. The book offers something for almost everybody interested in the field: from experimental techniques to visualize vortices and study their dynamics, to a state-of-the-art theoretical microscopic approach to multicomponent superconductivity.
Publisher: Springer
ISBN: 3319593552
Category : Technology & Engineering
Languages : en
Pages : 266
Book Description
This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researchers survey the most exciting and important recent developments in the field. Topics covered include: the use of scanning Hall probe microscopy to visualize interactions of a single vortex with pinning centers; Magneto-Optical Imaging for investigating what vortex avalanches are, why they appear, and how they can be controlled; and the vortex interactions responsible for the second magnetization peak. Other chapters discuss nanoengineered pinning centers of vortices for improved current-carrying capabilities, current anisotropy in cryomagnetic devices in relation to the pinning landscape, and the new physics associated with the discovery of new superconducting materials with multi-component superconductivity. The book offers something for almost everybody interested in the field: from experimental techniques to visualize vortices and study their dynamics, to a state-of-the-art theoretical microscopic approach to multicomponent superconductivity.
The Vortex State
Author: N. Bontemps
Publisher: Springer Science & Business Media
ISBN: 9401109745
Category : Science
Languages : en
Pages : 330
Book Description
One of the most spectacular consequences of the description of the superfluid condensate in superfluid He or in superconductors as a single macroscopic quantum state is the quantization of circulation, resulting in quantized vortex lines. This book draws no distinction between superfluid He3 and He4 and superconductors. The reader will find the essential introductory chapters and the most recent theoretical and experimental progress in our understanding of the vortex state in both superconductors and superfluids, from lectures given by leading experts in the field, both experimentalists and theoreticians, who gathered in Cargèse for a NATO ASI. The peculiar features related to short coherence lengths, 2D geometry, high temperatures, disorder, and pinning are thoroughly discussed.
Publisher: Springer Science & Business Media
ISBN: 9401109745
Category : Science
Languages : en
Pages : 330
Book Description
One of the most spectacular consequences of the description of the superfluid condensate in superfluid He or in superconductors as a single macroscopic quantum state is the quantization of circulation, resulting in quantized vortex lines. This book draws no distinction between superfluid He3 and He4 and superconductors. The reader will find the essential introductory chapters and the most recent theoretical and experimental progress in our understanding of the vortex state in both superconductors and superfluids, from lectures given by leading experts in the field, both experimentalists and theoreticians, who gathered in Cargèse for a NATO ASI. The peculiar features related to short coherence lengths, 2D geometry, high temperatures, disorder, and pinning are thoroughly discussed.
Nanostructured Superconductors
Author: Victor V. Moshchalkov
Publisher: World Scientific
ISBN: 9814343927
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
The main focus of the book is to present the effects of nanostructuring on superconducting critical parameters. Optimizing systematically flux and condensate confinement in various nanostructured superconductors, ranging from single nano-cells to their hu
Publisher: World Scientific
ISBN: 9814343927
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
The main focus of the book is to present the effects of nanostructuring on superconducting critical parameters. Optimizing systematically flux and condensate confinement in various nanostructured superconductors, ranging from single nano-cells to their hu
Superconductivity and Its Applications
Author: Yi-Han Kao
Publisher: American Institute of Physics
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 804
Book Description
Publisher: American Institute of Physics
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 804
Book Description
Nanostructure Science and Technology
Author: Richard W. Siegel
Publisher: Springer Science & Business Media
ISBN: 9780792358541
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.
Publisher: Springer Science & Business Media
ISBN: 9780792358541
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.
Magnetism and Synchrotron Radiation
Author: Eric Beaurepaire
Publisher: Springer Science & Business Media
ISBN: 3642044980
Category : Science
Languages : en
Pages : 435
Book Description
Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.
Publisher: Springer Science & Business Media
ISBN: 3642044980
Category : Science
Languages : en
Pages : 435
Book Description
Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.
Superconductors at the Nanoscale
Author: Roger Wördenweber
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110456249
Category : Science
Languages : en
Pages : 590
Book Description
By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. Examples are energy saving solutions, healthcare, and communication technologies. Key ingredients are nanopatterned materials which help to improve the superconducting critical parameters and performance of superconducting devices, and lead to novel functionalities. Contents Tutorial on nanostructured superconductors Imaging vortices in superconductors: from the atomic scale to macroscopic distances Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy STM studies of vortex cores in strongly confined nanoscale superconductors Type-1.5 superconductivity Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films Artificial pinning sites and their applications Vortices at microwave frequencies Physics and operation of superconducting single-photon devices Josephson and charging effect in mesoscopic superconducting devices NanoSQUIDs: Basics & recent advances Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks as emitters of terahertz radiation| Interference phenomena in superconductor-ferromagnet hybrids Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids Superconductor/ferromagnet hybrids
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110456249
Category : Science
Languages : en
Pages : 590
Book Description
By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. Examples are energy saving solutions, healthcare, and communication technologies. Key ingredients are nanopatterned materials which help to improve the superconducting critical parameters and performance of superconducting devices, and lead to novel functionalities. Contents Tutorial on nanostructured superconductors Imaging vortices in superconductors: from the atomic scale to macroscopic distances Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy STM studies of vortex cores in strongly confined nanoscale superconductors Type-1.5 superconductivity Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films Artificial pinning sites and their applications Vortices at microwave frequencies Physics and operation of superconducting single-photon devices Josephson and charging effect in mesoscopic superconducting devices NanoSQUIDs: Basics & recent advances Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks as emitters of terahertz radiation| Interference phenomena in superconductor-ferromagnet hybrids Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids Superconductor/ferromagnet hybrids
Flux Pinning in Superconductors
Author: Teruo Matsushita
Publisher: Springer Science & Business Media
ISBN: 3540445153
Category : Science
Languages : en
Pages : 509
Book Description
The book deals with the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-temperature and MgB2 superconductors. The loss originates from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. Readers will learn why the resultant loss is of hysteresis type in spite of such mechanism.
Publisher: Springer Science & Business Media
ISBN: 3540445153
Category : Science
Languages : en
Pages : 509
Book Description
The book deals with the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-temperature and MgB2 superconductors. The loss originates from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. Readers will learn why the resultant loss is of hysteresis type in spite of such mechanism.
Materials and Mechanisms of Superconductivity - High Temperature Superconductors
Author: Yu-Sheng He
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 580
Book Description
The discovery of high temperature superconductivity has not only opened many possibilities for potential technical applications, but has also provided a unique, challenging research subject for condensed matter physics and material sciences. High temperature superconductivity appears in systems with strong electron correlation and constitutes one of the key issues in condensed matter physics. The understanding of its mechanism will therefore greatly promote the future developments of this branch of science. During the last ten years great progress has been made in both fundamental and application-oriented research. Expanding knowledge of the physical properties in the superconducting as well as the normal state in preparing the way to an understanding of the underlying mechanisms. The accumulated experience in materials processing enables technical applications. All these aspects of high-Tc superconductivity and recent work on "traditional" superconductors have been exposed at the Beijing conference. The present volume is a separate edition of part I of the extensive Proceedings of the Fifth International Conference on Materials and Mechanisms of Superconductivity - High Temperature Superconductors. It contains the plenary, tutorial and invited papers, and gives a comprehensive account of the state-of-the-art as of March 1997.
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 580
Book Description
The discovery of high temperature superconductivity has not only opened many possibilities for potential technical applications, but has also provided a unique, challenging research subject for condensed matter physics and material sciences. High temperature superconductivity appears in systems with strong electron correlation and constitutes one of the key issues in condensed matter physics. The understanding of its mechanism will therefore greatly promote the future developments of this branch of science. During the last ten years great progress has been made in both fundamental and application-oriented research. Expanding knowledge of the physical properties in the superconducting as well as the normal state in preparing the way to an understanding of the underlying mechanisms. The accumulated experience in materials processing enables technical applications. All these aspects of high-Tc superconductivity and recent work on "traditional" superconductors have been exposed at the Beijing conference. The present volume is a separate edition of part I of the extensive Proceedings of the Fifth International Conference on Materials and Mechanisms of Superconductivity - High Temperature Superconductors. It contains the plenary, tutorial and invited papers, and gives a comprehensive account of the state-of-the-art as of March 1997.