Author: Douglas C. Giancoli
Publisher: Pearson Educación
ISBN: 9789702606956
Category : Juvenile Nonfiction
Languages : en
Pages : 850
Book Description
Presents basic concepts in physics, covering topics such as kinematics, Newton's laws of motion, gravitation, fluids, sound, heat, thermodynamics, magnetism, nuclear physics, and more, examples, practice questions and problems.
Physics
Author: Douglas C. Giancoli
Publisher: Pearson Educación
ISBN: 9789702606956
Category : Juvenile Nonfiction
Languages : en
Pages : 850
Book Description
Presents basic concepts in physics, covering topics such as kinematics, Newton's laws of motion, gravitation, fluids, sound, heat, thermodynamics, magnetism, nuclear physics, and more, examples, practice questions and problems.
Publisher: Pearson Educación
ISBN: 9789702606956
Category : Juvenile Nonfiction
Languages : en
Pages : 850
Book Description
Presents basic concepts in physics, covering topics such as kinematics, Newton's laws of motion, gravitation, fluids, sound, heat, thermodynamics, magnetism, nuclear physics, and more, examples, practice questions and problems.
Sears and Zemansky's University Physics
Author: Hugh D. Young
Publisher: Pearson Educación
ISBN: 9789702605119
Category : Science
Languages : en
Pages : 290
Book Description
With ActivPhysics only
Publisher: Pearson Educación
ISBN: 9789702605119
Category : Science
Languages : en
Pages : 290
Book Description
With ActivPhysics only
College Physics
Author: Raymond A. Serway
Publisher: Pearson Educación
ISBN: 9789702600152
Category : Education
Languages : en
Pages : 942
Book Description
"College Physics is written for a one-year course in introductory physics."--Preface.
Publisher: Pearson Educación
ISBN: 9789702600152
Category : Education
Languages : en
Pages : 942
Book Description
"College Physics is written for a one-year course in introductory physics."--Preface.
Engineering Mechanics
Author: R. C. Hibbeler
Publisher: Pearson Educación
ISBN: 9789702605003
Category : Science
Languages : en
Pages : 712
Book Description
Offers a concise and thorough presentation of engineering mechanics theory and application. The material is reinforced with numerous examples to illustrate principles and imaginative, well-illustrated problems of varying degrees of difficulty. The book is committed to developing users' problem-solving skills. Features new "Photorealistc" figures (approximately 200) that have been rendered in often 3D photo quality detail to appeal to visual learners. Features a large variety of problem types from a broad range of engineering disciplines, stressing practical, realistic situations encountered in professional practice, varying levels of difficulty, and problems that involve solution by computer.A thorough presentation of engineering mechanics theory and applications includes some of these topics: Kinematics of a Particle; Kinetics of a Particle: Force and Acceleration; Kinetics of a Particle: Work and Energy; Kinetics of a Particle: Impulse and Momentum; Planar Kinematics of a Rigid Body; Planar Kinetics of a Rigid Body: Force and Acceleration; Planar Kinetics of a Rigid Body: Work and Energy; Planar Kinetics of a Rigid Body: Impulse and Momentum; Three-Dimensional Kinematics of a Rigid Body; Three-Dimensional Kinetics of a Rigid Body; and Vibrations.For professionals in mechanical engineering, civil engineering, aeronautical engineering, and engineering mechanics careers.
Publisher: Pearson Educación
ISBN: 9789702605003
Category : Science
Languages : en
Pages : 712
Book Description
Offers a concise and thorough presentation of engineering mechanics theory and application. The material is reinforced with numerous examples to illustrate principles and imaginative, well-illustrated problems of varying degrees of difficulty. The book is committed to developing users' problem-solving skills. Features new "Photorealistc" figures (approximately 200) that have been rendered in often 3D photo quality detail to appeal to visual learners. Features a large variety of problem types from a broad range of engineering disciplines, stressing practical, realistic situations encountered in professional practice, varying levels of difficulty, and problems that involve solution by computer.A thorough presentation of engineering mechanics theory and applications includes some of these topics: Kinematics of a Particle; Kinetics of a Particle: Force and Acceleration; Kinetics of a Particle: Work and Energy; Kinetics of a Particle: Impulse and Momentum; Planar Kinematics of a Rigid Body; Planar Kinetics of a Rigid Body: Force and Acceleration; Planar Kinetics of a Rigid Body: Work and Energy; Planar Kinetics of a Rigid Body: Impulse and Momentum; Three-Dimensional Kinematics of a Rigid Body; Three-Dimensional Kinetics of a Rigid Body; and Vibrations.For professionals in mechanical engineering, civil engineering, aeronautical engineering, and engineering mechanics careers.
Proceedings
The Heavens on Earth
Author: David Aubin
Publisher: Duke University Press
ISBN: 082239250X
Category : Science
Languages : en
Pages : 400
Book Description
The Heavens on Earth explores the place of the observatory in nineteenth-century science and culture. Astronomy was a core pursuit for observatories, but usually not the only one. It belonged to a larger group of “observatory sciences” that also included geodesy, meteorology, geomagnetism, and even parts of physics and statistics. These pursuits coexisted in the nineteenth-century observatory; this collection surveys them as a coherent whole. Broadening the focus beyond the solitary astronomer at his telescope, it illuminates the observatory’s importance to technological, military, political, and colonial undertakings, as well as in advancing and popularizing the mathematical, physical, and cosmological sciences. The contributors examine “observatory techniques” developed and used not only in connection with observatories but also by instrument makers in their workshops, navy officers on ships, civil engineers in the field, and many others. These techniques included the calibration and coordination of precision instruments for making observations and taking measurements; methods of data acquisition and tabulation; and the production of maps, drawings, and photographs, as well as numerical, textual, and visual representations of the heavens and the earth. They also encompassed the social management of personnel within observatories, the coordination of international scientific collaborations, and interactions with dignitaries and the public. The state observatory occupied a particularly privileged place in the life of the city. With their imposing architecture and ancient traditions, state observatories served representative purposes for their patrons, whether as symbols of a monarch’s enlightened power, a nation’s industrial and scientific excellence, or republican progressive values. Focusing on observatory techniques in settings from Berlin, London, Paris, and Rome to Australia, Russia, Thailand, and the United States, The Heavens on Earth is a major contribution to the history of science. Contributors: David Aubin, Charlotte Bigg, Guy Boistel, Theresa Levitt, Massimo Mazzotti, Ole Molvig, Simon Schaffer, Martina Schiavon , H. Otto Sibum, Richard Staley, John Tresch, Simon Werrett, Sven Widmalm
Publisher: Duke University Press
ISBN: 082239250X
Category : Science
Languages : en
Pages : 400
Book Description
The Heavens on Earth explores the place of the observatory in nineteenth-century science and culture. Astronomy was a core pursuit for observatories, but usually not the only one. It belonged to a larger group of “observatory sciences” that also included geodesy, meteorology, geomagnetism, and even parts of physics and statistics. These pursuits coexisted in the nineteenth-century observatory; this collection surveys them as a coherent whole. Broadening the focus beyond the solitary astronomer at his telescope, it illuminates the observatory’s importance to technological, military, political, and colonial undertakings, as well as in advancing and popularizing the mathematical, physical, and cosmological sciences. The contributors examine “observatory techniques” developed and used not only in connection with observatories but also by instrument makers in their workshops, navy officers on ships, civil engineers in the field, and many others. These techniques included the calibration and coordination of precision instruments for making observations and taking measurements; methods of data acquisition and tabulation; and the production of maps, drawings, and photographs, as well as numerical, textual, and visual representations of the heavens and the earth. They also encompassed the social management of personnel within observatories, the coordination of international scientific collaborations, and interactions with dignitaries and the public. The state observatory occupied a particularly privileged place in the life of the city. With their imposing architecture and ancient traditions, state observatories served representative purposes for their patrons, whether as symbols of a monarch’s enlightened power, a nation’s industrial and scientific excellence, or republican progressive values. Focusing on observatory techniques in settings from Berlin, London, Paris, and Rome to Australia, Russia, Thailand, and the United States, The Heavens on Earth is a major contribution to the history of science. Contributors: David Aubin, Charlotte Bigg, Guy Boistel, Theresa Levitt, Massimo Mazzotti, Ole Molvig, Simon Schaffer, Martina Schiavon , H. Otto Sibum, Richard Staley, John Tresch, Simon Werrett, Sven Widmalm
Host Bibliographic Record for Boundwith Item Barcode 30112117732716 and Others
The reform that Physics needs
Author: J. M. Arnaiz
Publisher: Ediciones Go Beyond
ISBN:
Category : Science
Languages : en
Pages : 638
Book Description
In this book we develop step by step the FIRST ALGEBRA OF MAGNITUDES, the specific dyadic algebra for physical quantities, in order to rectify the sloppy hypothesis of «arithmetization» of Physics, normalized by the International System of Units in sections 2.1, 5.2 , 5.4.1 and 5.4.6 of his brochure SI, which is tolerated by a clueless scientific community. With dyadic algebra, full meaning is given to the meanings of the laws, equations and compound units of Physics, a sense that we all neglect today . As a culmination, the «DYSMETRIC» FORECAST is reached, with innumerable and far-reaching implications for the enrichment of physical models and the development of infinite innovations. In this way, the trap of «arithmetizing» Physics in which we all easily fall, even the most reputable and award-winning scientists, is ended. Except for one in the entire history of Physics, which was Newton, the only one who operated with magnitudes through the affinity of physical quantities with the elements of geometry, teaching us that, although Physics is not «arithmetizable», on the other hand it is it can be «geometrized». It seems incredible, but it is a grotesque fact that nowadays no one cares about what is really done when operating with physical magnitudes or what is the full meaning of the composite magnitudes or of the analytical formulations, which underlie all of Physics, for what no one should take a step without first having clarified this knowledge. On the contrary, it turns out that operations apparently as elementary as the multiplication of a meter by a kilogram have no arithmetic explanation, because no one identifies what the multiplier of that product is, which does not multiply numbers, but rather dyads or quantities of length and mass. Despite which, it seems that no one is bothered by such a ridiculous embarrassment. Can one call himself a physicist who cannot rigorously define this simple operation and does not care? Can a science be called Physics that lacks a coherent algebra to operate with its fundamental elements, the quantities of physical phenomena? The truth is that the defect is too gross not to take it into account. All this as a consequence of the fact that the current arithmetic hypothesis that postulates the abelian multiplicative group structure for the magnitudes is impossible. Such a structure is only valid for internal additive laws, it is not valid for external multiplicative laws. Obviously, this situation is shameful and pernicious for Physics, it is unsustainable and must be corrected as soon as possible. The dyadic algebra of magnitudes, in addition to giving meaning to the laws, equations, and compound magnitudes, reveals striking consequences, such as the non-existence of inverse elements of physical units, since heterogeneous multiplicative dyadic operations are not internal composition laws, but external. In turn, it naturally leads to «dysmetry», which makes it possible to represent the infinite physical realms of empty space and which radically transforms the vision of physical constants, incompatible in an absolute sense with «dysmetric» spaces, including the number pi and the speed of light.
Publisher: Ediciones Go Beyond
ISBN:
Category : Science
Languages : en
Pages : 638
Book Description
In this book we develop step by step the FIRST ALGEBRA OF MAGNITUDES, the specific dyadic algebra for physical quantities, in order to rectify the sloppy hypothesis of «arithmetization» of Physics, normalized by the International System of Units in sections 2.1, 5.2 , 5.4.1 and 5.4.6 of his brochure SI, which is tolerated by a clueless scientific community. With dyadic algebra, full meaning is given to the meanings of the laws, equations and compound units of Physics, a sense that we all neglect today . As a culmination, the «DYSMETRIC» FORECAST is reached, with innumerable and far-reaching implications for the enrichment of physical models and the development of infinite innovations. In this way, the trap of «arithmetizing» Physics in which we all easily fall, even the most reputable and award-winning scientists, is ended. Except for one in the entire history of Physics, which was Newton, the only one who operated with magnitudes through the affinity of physical quantities with the elements of geometry, teaching us that, although Physics is not «arithmetizable», on the other hand it is it can be «geometrized». It seems incredible, but it is a grotesque fact that nowadays no one cares about what is really done when operating with physical magnitudes or what is the full meaning of the composite magnitudes or of the analytical formulations, which underlie all of Physics, for what no one should take a step without first having clarified this knowledge. On the contrary, it turns out that operations apparently as elementary as the multiplication of a meter by a kilogram have no arithmetic explanation, because no one identifies what the multiplier of that product is, which does not multiply numbers, but rather dyads or quantities of length and mass. Despite which, it seems that no one is bothered by such a ridiculous embarrassment. Can one call himself a physicist who cannot rigorously define this simple operation and does not care? Can a science be called Physics that lacks a coherent algebra to operate with its fundamental elements, the quantities of physical phenomena? The truth is that the defect is too gross not to take it into account. All this as a consequence of the fact that the current arithmetic hypothesis that postulates the abelian multiplicative group structure for the magnitudes is impossible. Such a structure is only valid for internal additive laws, it is not valid for external multiplicative laws. Obviously, this situation is shameful and pernicious for Physics, it is unsustainable and must be corrected as soon as possible. The dyadic algebra of magnitudes, in addition to giving meaning to the laws, equations, and compound magnitudes, reveals striking consequences, such as the non-existence of inverse elements of physical units, since heterogeneous multiplicative dyadic operations are not internal composition laws, but external. In turn, it naturally leads to «dysmetry», which makes it possible to represent the infinite physical realms of empty space and which radically transforms the vision of physical constants, incompatible in an absolute sense with «dysmetric» spaces, including the number pi and the speed of light.
Some Aspects of Diffusion Theory
Author: A. Pignedoli
Publisher: Springer Science & Business Media
ISBN: 3642110517
Category : Mathematics
Languages : en
Pages : 544
Book Description
V.C.A. Ferraro: Diffusion of ions in a plasma with applications to the ionosphere.- P.C. Kendall: On the diffusion in the atmosphere and ionosphere.-F. Henin: Kinetic equations and Brownian motion.- T. Kahan:Théorie des réacteurs nucléaires: méthodes de résolution perturbationnelles, interactives et variationnelles.- C. Cattaneo: Sulla conduzione del calore.- C. Agostinelli: Formule di Green per la diffusione del campo magnetico in un fluido elettricamente conduttore.- A. Pignedoli: Transformational methods applied to some one-dimensional problems concerning the equations of the neutron transport theory.- A. Pignedoli: On the rigorous analysis of the problem of neutron transport in a slab geometry and on some other results.- G. Sestini: Principi di massimo per le soluzioni di equazioni paraboliche.
Publisher: Springer Science & Business Media
ISBN: 3642110517
Category : Mathematics
Languages : en
Pages : 544
Book Description
V.C.A. Ferraro: Diffusion of ions in a plasma with applications to the ionosphere.- P.C. Kendall: On the diffusion in the atmosphere and ionosphere.-F. Henin: Kinetic equations and Brownian motion.- T. Kahan:Théorie des réacteurs nucléaires: méthodes de résolution perturbationnelles, interactives et variationnelles.- C. Cattaneo: Sulla conduzione del calore.- C. Agostinelli: Formule di Green per la diffusione del campo magnetico in un fluido elettricamente conduttore.- A. Pignedoli: Transformational methods applied to some one-dimensional problems concerning the equations of the neutron transport theory.- A. Pignedoli: On the rigorous analysis of the problem of neutron transport in a slab geometry and on some other results.- G. Sestini: Principi di massimo per le soluzioni di equazioni paraboliche.
Education, physical activities and sport in a historical perspective = [Educació, activitats físiques i esport en una perspectiva històrica] : XIV ISCHE Conference 1992 : conference working papers
Author:
Publisher: Institut d'Estudis Catalans
ISBN:
Category :
Languages : en
Pages : 436
Book Description
Publisher: Institut d'Estudis Catalans
ISBN:
Category :
Languages : en
Pages : 436
Book Description