Author: Hannelore Lisei
Publisher: World Scientific
ISBN: 9811205752
Category : Mathematics
Languages : en
Pages : 364
Book Description
A key pedagogical feature of the textbook is the accessible approach to probability concepts through examples with explanations and problems with solutions. The reader is encouraged to simulate in Matlab random experiments and to explore the theoretical aspects of the probabilistic models behind the studied experiments. By this appropriate balance between simulations and rigorous mathematical approach, the reader can experience the excitement of comprehending basic concepts and can develop the intuitive thinking in solving problems. The current textbook does not contain proofs for the stated theorems, but corresponding references are given. Moreover, the given Matlab codes and detailed solutions make the textbook accessible to researchers and undergraduate students, by learning various techniques from probability theory and its applications in other fields. This book is intended not only for students of mathematics but also for students of natural sciences, engineering, computer science and for science researchers, who possess the basic knowledge of calculus for the mathematical concepts of the textbook and elementary programming skills for the Matlab simulations.
Probability: Theory, Examples, Problems, Simulations
Author: Hannelore Lisei
Publisher: World Scientific
ISBN: 9811205752
Category : Mathematics
Languages : en
Pages : 364
Book Description
A key pedagogical feature of the textbook is the accessible approach to probability concepts through examples with explanations and problems with solutions. The reader is encouraged to simulate in Matlab random experiments and to explore the theoretical aspects of the probabilistic models behind the studied experiments. By this appropriate balance between simulations and rigorous mathematical approach, the reader can experience the excitement of comprehending basic concepts and can develop the intuitive thinking in solving problems. The current textbook does not contain proofs for the stated theorems, but corresponding references are given. Moreover, the given Matlab codes and detailed solutions make the textbook accessible to researchers and undergraduate students, by learning various techniques from probability theory and its applications in other fields. This book is intended not only for students of mathematics but also for students of natural sciences, engineering, computer science and for science researchers, who possess the basic knowledge of calculus for the mathematical concepts of the textbook and elementary programming skills for the Matlab simulations.
Publisher: World Scientific
ISBN: 9811205752
Category : Mathematics
Languages : en
Pages : 364
Book Description
A key pedagogical feature of the textbook is the accessible approach to probability concepts through examples with explanations and problems with solutions. The reader is encouraged to simulate in Matlab random experiments and to explore the theoretical aspects of the probabilistic models behind the studied experiments. By this appropriate balance between simulations and rigorous mathematical approach, the reader can experience the excitement of comprehending basic concepts and can develop the intuitive thinking in solving problems. The current textbook does not contain proofs for the stated theorems, but corresponding references are given. Moreover, the given Matlab codes and detailed solutions make the textbook accessible to researchers and undergraduate students, by learning various techniques from probability theory and its applications in other fields. This book is intended not only for students of mathematics but also for students of natural sciences, engineering, computer science and for science researchers, who possess the basic knowledge of calculus for the mathematical concepts of the textbook and elementary programming skills for the Matlab simulations.
Understanding Probability
Author: Henk Tijms
Publisher: Cambridge University Press
ISBN: 1139465457
Category : Mathematics
Languages : en
Pages : 407
Book Description
In this fully revised second edition of Understanding Probability, the reader can learn about the world of probability in an informal way. The author demystifies the law of large numbers, betting systems, random walks, the bootstrap, rare events, the central limit theorem, the Bayesian approach and more. This second edition has wider coverage, more explanations and examples and exercises, and a new chapter introducing Markov chains, making it a great choice for a first probability course. But its easy-going style makes it just as valuable if you want to learn about the subject on your own, and high school algebra is really all the mathematical background you need.
Publisher: Cambridge University Press
ISBN: 1139465457
Category : Mathematics
Languages : en
Pages : 407
Book Description
In this fully revised second edition of Understanding Probability, the reader can learn about the world of probability in an informal way. The author demystifies the law of large numbers, betting systems, random walks, the bootstrap, rare events, the central limit theorem, the Bayesian approach and more. This second edition has wider coverage, more explanations and examples and exercises, and a new chapter introducing Markov chains, making it a great choice for a first probability course. But its easy-going style makes it just as valuable if you want to learn about the subject on your own, and high school algebra is really all the mathematical background you need.
Probability
Author: Hannelore Lisei
Publisher:
ISBN: 9789811205743
Category : Electronic books
Languages : en
Pages : 351
Book Description
Preface -- Probability space -- Random variables and vectors -- Numerical characteristics of random variables and vectors -- Sequences of random variables -- Examples of stochastic processes - Appendix - Bibliography -- Index.
Publisher:
ISBN: 9789811205743
Category : Electronic books
Languages : en
Pages : 351
Book Description
Preface -- Probability space -- Random variables and vectors -- Numerical characteristics of random variables and vectors -- Sequences of random variables -- Examples of stochastic processes - Appendix - Bibliography -- Index.
Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Introduction to Probability
Author: Joseph K. Blitzstein
Publisher: CRC Press
ISBN: 1466575573
Category : Mathematics
Languages : en
Pages : 599
Book Description
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Publisher: CRC Press
ISBN: 1466575573
Category : Mathematics
Languages : en
Pages : 599
Book Description
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions
Author: A. A. Sveshnikov
Publisher: Courier Corporation
ISBN: 0486137562
Category : Mathematics
Languages : en
Pages : 516
Book Description
Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
Publisher: Courier Corporation
ISBN: 0486137562
Category : Mathematics
Languages : en
Pages : 516
Book Description
Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
Probability Through Problems
Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 0387216596
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book of problems is designed to challenge students learning probability. Each chapter is divided into three parts: Problems, Hints, and Solutions. All Problems sections include expository material, making the book self-contained. Definitions and statements of important results are interlaced with relevant problems. The only prerequisite is basic algebra and calculus.
Publisher: Springer Science & Business Media
ISBN: 0387216596
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book of problems is designed to challenge students learning probability. Each chapter is divided into three parts: Problems, Hints, and Solutions. All Problems sections include expository material, making the book self-contained. Definitions and statements of important results are interlaced with relevant problems. The only prerequisite is basic algebra and calculus.
Introduction to Data Science
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Introduction to Probability
Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 188652923X
Category : Mathematics
Languages : en
Pages : 544
Book Description
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Publisher: Athena Scientific
ISBN: 188652923X
Category : Mathematics
Languages : en
Pages : 544
Book Description
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
A Modern Introduction to Probability and Statistics
Author: F.M. Dekking
Publisher: Springer Science & Business Media
ISBN: 1846281687
Category : Mathematics
Languages : en
Pages : 485
Book Description
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Publisher: Springer Science & Business Media
ISBN: 1846281687
Category : Mathematics
Languages : en
Pages : 485
Book Description
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books