Author: Hisashi Kobayashi
Publisher: Cambridge University Press
ISBN: 1139502611
Category : Technology & Engineering
Languages : en
Pages : 813
Book Description
Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.
Probability, Random Processes, and Statistical Analysis
Author: Hisashi Kobayashi
Publisher: Cambridge University Press
ISBN: 1139502611
Category : Technology & Engineering
Languages : en
Pages : 813
Book Description
Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.
Publisher: Cambridge University Press
ISBN: 1139502611
Category : Technology & Engineering
Languages : en
Pages : 813
Book Description
Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.
Probability and Random Processes
Author: Venkatarama Krishnan
Publisher: John Wiley & Sons
ISBN: 0471998281
Category : Mathematics
Languages : en
Pages : 739
Book Description
A resource for probability AND random processes, with hundreds ofworked examples and probability and Fourier transform tables This survival guide in probability and random processes eliminatesthe need to pore through several resources to find a certainformula or table. It offers a compendium of most distributionfunctions used by communication engineers, queuing theoryspecialists, signal processing engineers, biomedical engineers,physicists, and students. Key topics covered include: * Random variables and most of their frequently used discrete andcontinuous probability distribution functions * Moments, transformations, and convergences of randomvariables * Characteristic, generating, and moment-generating functions * Computer generation of random variates * Estimation theory and the associated orthogonalityprinciple * Linear vector spaces and matrix theory with vector and matrixdifferentiation concepts * Vector random variables * Random processes and stationarity concepts * Extensive classification of random processes * Random processes through linear systems and the associated Wienerand Kalman filters * Application of probability in single photon emission tomography(SPECT) More than 400 figures drawn to scale assist readers inunderstanding and applying theory. Many of these figures accompanythe more than 300 examples given to help readers visualize how tosolve the problem at hand. In many instances, worked examples aresolved with more than one approach to illustrate how differentprobability methodologies can work for the same problem. Several probability tables with accuracy up to nine decimal placesare provided in the appendices for quick reference. A specialfeature is the graphical presentation of the commonly occurringFourier transforms, where both time and frequency functions aredrawn to scale. This book is of particular value to undergraduate and graduatestudents in electrical, computer, and civil engineering, as well asstudents in physics and applied mathematics. Engineers, computerscientists, biostatisticians, and researchers in communicationswill also benefit from having a single resource to address mostissues in probability and random processes.
Publisher: John Wiley & Sons
ISBN: 0471998281
Category : Mathematics
Languages : en
Pages : 739
Book Description
A resource for probability AND random processes, with hundreds ofworked examples and probability and Fourier transform tables This survival guide in probability and random processes eliminatesthe need to pore through several resources to find a certainformula or table. It offers a compendium of most distributionfunctions used by communication engineers, queuing theoryspecialists, signal processing engineers, biomedical engineers,physicists, and students. Key topics covered include: * Random variables and most of their frequently used discrete andcontinuous probability distribution functions * Moments, transformations, and convergences of randomvariables * Characteristic, generating, and moment-generating functions * Computer generation of random variates * Estimation theory and the associated orthogonalityprinciple * Linear vector spaces and matrix theory with vector and matrixdifferentiation concepts * Vector random variables * Random processes and stationarity concepts * Extensive classification of random processes * Random processes through linear systems and the associated Wienerand Kalman filters * Application of probability in single photon emission tomography(SPECT) More than 400 figures drawn to scale assist readers inunderstanding and applying theory. Many of these figures accompanythe more than 300 examples given to help readers visualize how tosolve the problem at hand. In many instances, worked examples aresolved with more than one approach to illustrate how differentprobability methodologies can work for the same problem. Several probability tables with accuracy up to nine decimal placesare provided in the appendices for quick reference. A specialfeature is the graphical presentation of the commonly occurringFourier transforms, where both time and frequency functions aredrawn to scale. This book is of particular value to undergraduate and graduatestudents in electrical, computer, and civil engineering, as well asstudents in physics and applied mathematics. Engineers, computerscientists, biostatisticians, and researchers in communicationswill also benefit from having a single resource to address mostissues in probability and random processes.
Random Processes for Engineers
Author: Bruce Hajek
Publisher: Cambridge University Press
ISBN: 1316241246
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
Publisher: Cambridge University Press
ISBN: 1316241246
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
Introduction to Probability, Statistics, and Random Processes
Author: Hossein Pishro-Nik
Publisher:
ISBN: 9780990637202
Category : Probabilities
Languages : en
Pages : 746
Book Description
The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
Publisher:
ISBN: 9780990637202
Category : Probabilities
Languages : en
Pages : 746
Book Description
The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
Theory of Probability and Random Processes
Author: Leonid Koralov
Publisher: Springer Science & Business Media
ISBN: 3540688293
Category : Mathematics
Languages : en
Pages : 346
Book Description
A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion.
Publisher: Springer Science & Business Media
ISBN: 3540688293
Category : Mathematics
Languages : en
Pages : 346
Book Description
A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion.
Probability Theory, Random Processes and Mathematical Statistics
Author: I︠U︡riĭ Anatolʹevich Rozanov
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 280
Book Description
The second part (Chapters 4-6) provides a foundation of stochastic analysis, gives information on basic models of random processes and tools to study them. Here a certain familiarity with elements of functional analysis is necessary. Important material is presented in the form of examples to keep readers involved. Audience: This is a concise textbook for a graduate level course, with carefully selected topics representing the most important areas of modern probability, random processes and statistics.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 280
Book Description
The second part (Chapters 4-6) provides a foundation of stochastic analysis, gives information on basic models of random processes and tools to study them. Here a certain familiarity with elements of functional analysis is necessary. Important material is presented in the form of examples to keep readers involved. Audience: This is a concise textbook for a graduate level course, with carefully selected topics representing the most important areas of modern probability, random processes and statistics.
Probability, Random Variables, and Random Processes
Author: John J. Shynk
Publisher: John Wiley & Sons
ISBN: 1118393953
Category : Computers
Languages : en
Pages : 850
Book Description
Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.
Publisher: John Wiley & Sons
ISBN: 1118393953
Category : Computers
Languages : en
Pages : 850
Book Description
Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.
Probability, Statistics, and Stochastic Processes
Author: Peter Olofsson
Publisher: John Wiley & Sons
ISBN: 0470889748
Category : Mathematics
Languages : en
Pages : 573
Book Description
Praise for the First Edition ". . . an excellent textbook . . . well organized and neatly written." —Mathematical Reviews ". . . amazingly interesting . . ." —Technometrics Thoroughly updated to showcase the interrelationships between probability, statistics, and stochastic processes, Probability, Statistics, and Stochastic Processes, Second Edition prepares readers to collect, analyze, and characterize data in their chosen fields. Beginning with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions, the book goes on to present limit theorems and simulation. The authors combine a rigorous, calculus-based development of theory with an intuitive approach that appeals to readers' sense of reason and logic. Including more than 400 examples that help illustrate concepts and theory, the Second Edition features new material on statistical inference and a wealth of newly added topics, including: Consistency of point estimators Large sample theory Bootstrap simulation Multiple hypothesis testing Fisher's exact test and Kolmogorov-Smirnov test Martingales, renewal processes, and Brownian motion One-way analysis of variance and the general linear model Extensively class-tested to ensure an accessible presentation, Probability, Statistics, and Stochastic Processes, Second Edition is an excellent book for courses on probability and statistics at the upper-undergraduate level. The book is also an ideal resource for scientists and engineers in the fields of statistics, mathematics, industrial management, and engineering.
Publisher: John Wiley & Sons
ISBN: 0470889748
Category : Mathematics
Languages : en
Pages : 573
Book Description
Praise for the First Edition ". . . an excellent textbook . . . well organized and neatly written." —Mathematical Reviews ". . . amazingly interesting . . ." —Technometrics Thoroughly updated to showcase the interrelationships between probability, statistics, and stochastic processes, Probability, Statistics, and Stochastic Processes, Second Edition prepares readers to collect, analyze, and characterize data in their chosen fields. Beginning with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions, the book goes on to present limit theorems and simulation. The authors combine a rigorous, calculus-based development of theory with an intuitive approach that appeals to readers' sense of reason and logic. Including more than 400 examples that help illustrate concepts and theory, the Second Edition features new material on statistical inference and a wealth of newly added topics, including: Consistency of point estimators Large sample theory Bootstrap simulation Multiple hypothesis testing Fisher's exact test and Kolmogorov-Smirnov test Martingales, renewal processes, and Brownian motion One-way analysis of variance and the general linear model Extensively class-tested to ensure an accessible presentation, Probability, Statistics, and Stochastic Processes, Second Edition is an excellent book for courses on probability and statistics at the upper-undergraduate level. The book is also an ideal resource for scientists and engineers in the fields of statistics, mathematics, industrial management, and engineering.
Exercise Solutions to Accompany Probability and Random Processes
Author: Amedeo R. Odoni
Publisher:
ISBN: 9780070475670
Category :
Languages : en
Pages : 415
Book Description
Publisher:
ISBN: 9780070475670
Category :
Languages : en
Pages : 415
Book Description
An Introduction to Statistical Signal Processing
Author: Robert M. Gray
Publisher: Cambridge University Press
ISBN: 1139456288
Category : Technology & Engineering
Languages : en
Pages : 479
Book Description
This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
Publisher: Cambridge University Press
ISBN: 1139456288
Category : Technology & Engineering
Languages : en
Pages : 479
Book Description
This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.