Author: Daniel Courgeau
Publisher: Springer Science & Business Media
ISBN: 9400728794
Category : Social Science
Languages : en
Pages : 333
Book Description
This work examines in depth the methodological relationships that probability and statistics have maintained with the social sciences from their emergence. It covers both the history of thought and current methods. First it examines in detail the history of the different paradigms and axioms for probability, from their emergence in the seventeenth century up to the most recent developments of the three major concepts: objective, subjective and logicist probability. It shows the statistical inference they permit, different applications to social sciences and the main problems they encounter. On the other side, from social sciences—particularly population sciences—to probability, it shows the different uses they made of probabilistic concepts during their history, from the seventeenth century, according to their paradigms: cross-sectional, longitudinal, hierarchical, contextual and multilevel approaches. While the ties may have seemed loose at times, they have more often been very close: some advances in probability were driven by the search for answers to questions raised by the social sciences; conversely, the latter have made progress thanks to advances in probability. This dual approach sheds new light on the historical development of the social sciences and probability, and on the enduring relevance of their links. It permits also to solve a number of methodological problems encountered all along their history.
Probability and Social Science
Author: Daniel Courgeau
Publisher: Springer Science & Business Media
ISBN: 9400728794
Category : Social Science
Languages : en
Pages : 333
Book Description
This work examines in depth the methodological relationships that probability and statistics have maintained with the social sciences from their emergence. It covers both the history of thought and current methods. First it examines in detail the history of the different paradigms and axioms for probability, from their emergence in the seventeenth century up to the most recent developments of the three major concepts: objective, subjective and logicist probability. It shows the statistical inference they permit, different applications to social sciences and the main problems they encounter. On the other side, from social sciences—particularly population sciences—to probability, it shows the different uses they made of probabilistic concepts during their history, from the seventeenth century, according to their paradigms: cross-sectional, longitudinal, hierarchical, contextual and multilevel approaches. While the ties may have seemed loose at times, they have more often been very close: some advances in probability were driven by the search for answers to questions raised by the social sciences; conversely, the latter have made progress thanks to advances in probability. This dual approach sheds new light on the historical development of the social sciences and probability, and on the enduring relevance of their links. It permits also to solve a number of methodological problems encountered all along their history.
Publisher: Springer Science & Business Media
ISBN: 9400728794
Category : Social Science
Languages : en
Pages : 333
Book Description
This work examines in depth the methodological relationships that probability and statistics have maintained with the social sciences from their emergence. It covers both the history of thought and current methods. First it examines in detail the history of the different paradigms and axioms for probability, from their emergence in the seventeenth century up to the most recent developments of the three major concepts: objective, subjective and logicist probability. It shows the statistical inference they permit, different applications to social sciences and the main problems they encounter. On the other side, from social sciences—particularly population sciences—to probability, it shows the different uses they made of probabilistic concepts during their history, from the seventeenth century, according to their paradigms: cross-sectional, longitudinal, hierarchical, contextual and multilevel approaches. While the ties may have seemed loose at times, they have more often been very close: some advances in probability were driven by the search for answers to questions raised by the social sciences; conversely, the latter have made progress thanks to advances in probability. This dual approach sheds new light on the historical development of the social sciences and probability, and on the enduring relevance of their links. It permits also to solve a number of methodological problems encountered all along their history.
Probability and Social Science
Author: Daniel Courgeau
Publisher: Springer Science & Business Media
ISBN: 9400728786
Category : Social Science
Languages : en
Pages : 333
Book Description
This work examines in depth the methodological relationships that probability and statistics have maintained with the social sciences from their emergence. It covers both the history of thought and current methods. First it examines in detail the history of the different paradigms and axioms for probability, from their emergence in the seventeenth century up to the most recent developments of the three major concepts: objective, subjective and logicist probability. It shows the statistical inference they permit, different applications to social sciences and the main problems they encounter. On the other side, from social sciences—particularly population sciences—to probability, it shows the different uses they made of probabilistic concepts during their history, from the seventeenth century, according to their paradigms: cross-sectional, longitudinal, hierarchical, contextual and multilevel approaches. While the ties may have seemed loose at times, they have more often been very close: some advances in probability were driven by the search for answers to questions raised by the social sciences; conversely, the latter have made progress thanks to advances in probability. This dual approach sheds new light on the historical development of the social sciences and probability, and on the enduring relevance of their links. It permits also to solve a number of methodological problems encountered all along their history.
Publisher: Springer Science & Business Media
ISBN: 9400728786
Category : Social Science
Languages : en
Pages : 333
Book Description
This work examines in depth the methodological relationships that probability and statistics have maintained with the social sciences from their emergence. It covers both the history of thought and current methods. First it examines in detail the history of the different paradigms and axioms for probability, from their emergence in the seventeenth century up to the most recent developments of the three major concepts: objective, subjective and logicist probability. It shows the statistical inference they permit, different applications to social sciences and the main problems they encounter. On the other side, from social sciences—particularly population sciences—to probability, it shows the different uses they made of probabilistic concepts during their history, from the seventeenth century, according to their paradigms: cross-sectional, longitudinal, hierarchical, contextual and multilevel approaches. While the ties may have seemed loose at times, they have more often been very close: some advances in probability were driven by the search for answers to questions raised by the social sciences; conversely, the latter have made progress thanks to advances in probability. This dual approach sheds new light on the historical development of the social sciences and probability, and on the enduring relevance of their links. It permits also to solve a number of methodological problems encountered all along their history.
Quantitative Social Science
Author: Kosuke Imai
Publisher: Princeton University Press
ISBN: 0691191093
Category : Political Science
Languages : en
Pages : 464
Book Description
"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
Publisher: Princeton University Press
ISBN: 0691191093
Category : Political Science
Languages : en
Pages : 464
Book Description
"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
Statistics for the Social Sciences
Author: R. Mark Sirkin
Publisher: SAGE
ISBN: 9781412905466
Category : Mathematics
Languages : en
Pages : 636
Book Description
Do your students lack confidence in their ability to handle quantitative work? Do they get confused about how to enter statistical data on SAS, SPSS, and Excel programs? The new Third Edition of the bestselling Statistics for the Social Sciences is the solution to these dilemmas Popular in previous editions, this Third Edition continues to help build students' confidence and ability in doing statistical analysis by slowly moving from concepts that require little computational work to those that require more. Author R. Mark Sirkin once again demonstrates how statistics can be used so that students come to appreciate their usefulness rather than fearing them. Statistics for the Social Sciences emphasizes the analysis and interpretation of data to give students a feel for how data interpretation is related to the methods by which the information was obtained. The book includes lists of key concepts, chapter exercises, topic boxes, and more
Publisher: SAGE
ISBN: 9781412905466
Category : Mathematics
Languages : en
Pages : 636
Book Description
Do your students lack confidence in their ability to handle quantitative work? Do they get confused about how to enter statistical data on SAS, SPSS, and Excel programs? The new Third Edition of the bestselling Statistics for the Social Sciences is the solution to these dilemmas Popular in previous editions, this Third Edition continues to help build students' confidence and ability in doing statistical analysis by slowly moving from concepts that require little computational work to those that require more. Author R. Mark Sirkin once again demonstrates how statistics can be used so that students come to appreciate their usefulness rather than fearing them. Statistics for the Social Sciences emphasizes the analysis and interpretation of data to give students a feel for how data interpretation is related to the methods by which the information was obtained. The book includes lists of key concepts, chapter exercises, topic boxes, and more
Data Analysis for Social Science
Author: Elena Llaudet
Publisher: Princeton University Press
ISBN: 0691199434
Category : Computers
Languages : en
Pages : 256
Book Description
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Publisher: Princeton University Press
ISBN: 0691199434
Category : Computers
Languages : en
Pages : 256
Book Description
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Statistical Modeling and Inference for Social Science
Author: Sean Gailmard
Publisher: Cambridge University Press
ISBN: 1107003148
Category : Business & Economics
Languages : en
Pages : 393
Book Description
Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.
Publisher: Cambridge University Press
ISBN: 1107003148
Category : Business & Economics
Languages : en
Pages : 393
Book Description
Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.
Bayesian Analysis for the Social Sciences
Author: Simon Jackman
Publisher: John Wiley & Sons
ISBN: 9780470686638
Category : Mathematics
Languages : en
Pages : 598
Book Description
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
Publisher: John Wiley & Sons
ISBN: 9780470686638
Category : Mathematics
Languages : en
Pages : 598
Book Description
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
Statistics for the Social Sciences
Author: Russell T. Warne
Publisher: Cambridge University Press
ISBN: 110889853X
Category : Psychology
Languages : en
Pages : 612
Book Description
The second edition of Statistics for the Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their field of study. By using the General Linear Model (GLM), the author builds a foundation that enables students to see how statistical methods are interrelated enabling them to build on the basic skills. The author makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this edition will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting, and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice, and reflection questions.
Publisher: Cambridge University Press
ISBN: 110889853X
Category : Psychology
Languages : en
Pages : 612
Book Description
The second edition of Statistics for the Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their field of study. By using the General Linear Model (GLM), the author builds a foundation that enables students to see how statistical methods are interrelated enabling them to build on the basic skills. The author makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this edition will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting, and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice, and reflection questions.
The Probability of God
Author: Dr. Stephen D. Unwin
Publisher: Forum Books
ISBN: 1400097541
Category : Religion
Languages : en
Pages : 274
Book Description
Does God exist? This is probably the most debated question in the history of mankind. Scholars, scientists, and philosophers have spent their lifetimes trying to prove or disprove the existence of God, only to have their theories crucified by other scholars, scientists, and philosophers. Where the debate breaks down is in the ambiguities and colloquialisms of language. But, by using a universal, unambiguous language—namely, mathematics—can this question finally be answered definitively? That’s what Dr. Stephen Unwin attempts to do in this riveting, accessible, and witty book, The Probability of God. At its core, this groundbreaking book reveals how a math equation developed more than 200 years ago by noted European philosopher Thomas Bayes can be used to calculate the probability that God exists. The equation itself is much more complicated than a simple coin toss (heads, He’s up there running the show; tails, He’s not). Yet Dr. Unwin writes with a clarity that makes his mathematical proof easy for even the nonmathematician to understand and a verve that makes his book a delight to read. Leading you carefully through each step in his argument, he demonstrates in the end that God does indeed exist. Whether you’re a devout believer and agree with Dr. Unwin’s proof or are unsure about all things divine, you will find this provocative book enlightening and engaging.
Publisher: Forum Books
ISBN: 1400097541
Category : Religion
Languages : en
Pages : 274
Book Description
Does God exist? This is probably the most debated question in the history of mankind. Scholars, scientists, and philosophers have spent their lifetimes trying to prove or disprove the existence of God, only to have their theories crucified by other scholars, scientists, and philosophers. Where the debate breaks down is in the ambiguities and colloquialisms of language. But, by using a universal, unambiguous language—namely, mathematics—can this question finally be answered definitively? That’s what Dr. Stephen Unwin attempts to do in this riveting, accessible, and witty book, The Probability of God. At its core, this groundbreaking book reveals how a math equation developed more than 200 years ago by noted European philosopher Thomas Bayes can be used to calculate the probability that God exists. The equation itself is much more complicated than a simple coin toss (heads, He’s up there running the show; tails, He’s not). Yet Dr. Unwin writes with a clarity that makes his mathematical proof easy for even the nonmathematician to understand and a verve that makes his book a delight to read. Leading you carefully through each step in his argument, he demonstrates in the end that God does indeed exist. Whether you’re a devout believer and agree with Dr. Unwin’s proof or are unsure about all things divine, you will find this provocative book enlightening and engaging.
Probability in Social Science
Author: S. Goldberg
Publisher: Springer Science & Business Media
ISBN: 146125616X
Category : Social Science
Languages : en
Pages : 127
Book Description
Birkhauser Boston, Inc., will publish a series of carefully selected mono graphs in the area of mathematical modeling to present serious applications of mathematics for both the undergraduate and the professional audience. Some of the monographs to be selected and published will appeal more to the professional mathematician and user of mathematics, serving to familiarize the user with new models and new methods. Some, like the present monograph, will stress the educational aspect and will appeal more to a student audience, either as a textbook or as additional reading. We feel that this first volume in the series may in itself serve as a model for our program. Samuel Goldberg attaches a high priority to teaching stu dents the art of modeling, that is, to use his words, the art of constructing useful mathematical models of real-world phenomena. We concur. It is our strong conviction as editors that the connection between the actual problems and their mathematical models must be factually plausible, if not actually real. As this first volume in the new series goes to press, we invite its readers to share with us both their criticisms and their constructive suggestions.
Publisher: Springer Science & Business Media
ISBN: 146125616X
Category : Social Science
Languages : en
Pages : 127
Book Description
Birkhauser Boston, Inc., will publish a series of carefully selected mono graphs in the area of mathematical modeling to present serious applications of mathematics for both the undergraduate and the professional audience. Some of the monographs to be selected and published will appeal more to the professional mathematician and user of mathematics, serving to familiarize the user with new models and new methods. Some, like the present monograph, will stress the educational aspect and will appeal more to a student audience, either as a textbook or as additional reading. We feel that this first volume in the series may in itself serve as a model for our program. Samuel Goldberg attaches a high priority to teaching stu dents the art of modeling, that is, to use his words, the art of constructing useful mathematical models of real-world phenomena. We concur. It is our strong conviction as editors that the connection between the actual problems and their mathematical models must be factually plausible, if not actually real. As this first volume in the new series goes to press, we invite its readers to share with us both their criticisms and their constructive suggestions.