Probabilistic Causality in Longitudinal Studies PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Probabilistic Causality in Longitudinal Studies PDF full book. Access full book title Probabilistic Causality in Longitudinal Studies by Mervi Eerola. Download full books in PDF and EPUB format.

Probabilistic Causality in Longitudinal Studies

Probabilistic Causality in Longitudinal Studies PDF Author: Mervi Eerola
Publisher: Springer Science & Business Media
ISBN: 1461226848
Category : Mathematics
Languages : en
Pages : 143

Book Description
In many applied fields of statistics the concept of causality is central to a scientific investigation. The author's aim in this book is to extend the classical theories of probabilistic causality to longitudinal settings and to propose that interesting causal questions can be related to causal effects which can change in time. The proposed prediction method in this study provides a framework to study the dynamics and the magnitudes of causal effects in a series of dependent events. Its usefulness is demonstrated by the analysis of two examples both drawn from biomedicine, one on bone marrow transplants and one on mental hospitalization. Consequently, statistical researchers and other scientists concerned with identifying causal relationships will find this an interesting and new approach to this problem.

Probabilistic Causality in Longitudinal Studies

Probabilistic Causality in Longitudinal Studies PDF Author: Mervi Eerola
Publisher: Springer Science & Business Media
ISBN: 1461226848
Category : Mathematics
Languages : en
Pages : 143

Book Description
In many applied fields of statistics the concept of causality is central to a scientific investigation. The author's aim in this book is to extend the classical theories of probabilistic causality to longitudinal settings and to propose that interesting causal questions can be related to causal effects which can change in time. The proposed prediction method in this study provides a framework to study the dynamics and the magnitudes of causal effects in a series of dependent events. Its usefulness is demonstrated by the analysis of two examples both drawn from biomedicine, one on bone marrow transplants and one on mental hospitalization. Consequently, statistical researchers and other scientists concerned with identifying causal relationships will find this an interesting and new approach to this problem.

Probabilistic Causality in Longitudinal Studies

Probabilistic Causality in Longitudinal Studies PDF Author: Mervi Eerola
Publisher:
ISBN: 9781461226857
Category :
Languages : en
Pages : 148

Book Description


Unified Methods for Censored Longitudinal Data and Causality

Unified Methods for Censored Longitudinal Data and Causality PDF Author: Mark J. van der Laan
Publisher: Springer Science & Business Media
ISBN: 0387217002
Category : Mathematics
Languages : en
Pages : 412

Book Description
A fundamental statistical framework for the analysis of complex longitudinal data is provided in this book. It provides the first comprehensive description of optimal estimation techniques based on time-dependent data structures. The techniques go beyond standard statistical approaches and can be used to teach masters and Ph.D. students. The text is ideally suitable for researchers in statistics with a strong interest in the analysis of complex longitudinal data.

Causality in Time Series: Challenges in Machine Learning

Causality in Time Series: Challenges in Machine Learning PDF Author: Florin Popescu
Publisher:
ISBN: 9780971977754
Category : Computers
Languages : en
Pages : 152

Book Description
This volume in the Challenges in Machine Learning series gathers papers from the Mini Symposium on Causality in Time Series, which was part of the Neural Information Processing Systems (NIPS) confernce in 2009 in Vancouver, Canada. These papers present state-of-the-art research in time-series causality to the machine learning community, unifying methodological interests in the various communities that require such inference.

Causal Inference in Statistics

Causal Inference in Statistics PDF Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162

Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Causal Inference in Statistics, Social, and Biomedical Sciences

Causal Inference in Statistics, Social, and Biomedical Sciences PDF Author: Guido W. Imbens
Publisher: Cambridge University Press
ISBN: 0521885884
Category : Business & Economics
Languages : en
Pages : 647

Book Description
This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Linear Mixed Models in Practice

Linear Mixed Models in Practice PDF Author: Geert Verbeke
Publisher: Springer Science & Business Media
ISBN: 146122294X
Category : Medical
Languages : en
Pages : 319

Book Description
A comprehensive treatment of linear mixed models, focusing on examples from designed experiments and longitudinal studies. Aimed at applied statisticians and biomedical researchers in industry, public health organisations, contract research organisations, and academia, this book is explanatory rather than mathematical rigorous. Although most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated, considerable effort was put into presenting the data analyses in a software-independent fashion.

Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis

Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis PDF Author: Danyu Lin
Publisher: Springer Science & Business Media
ISBN: 1468463160
Category : Medical
Languages : en
Pages : 314

Book Description
The papers in this volume discuss important methodological advances in several important areas, including multivariate failure time data and interval censored data. The book will be an indispensable reference for researchers and practitioners in biostatistics, medical research, and the health sciences.

Case Studies in Environmental Statistics

Case Studies in Environmental Statistics PDF Author: Douglas Nychka
Publisher: Springer Science & Business Media
ISBN: 1461222265
Category : Mathematics
Languages : en
Pages : 207

Book Description
This book offers a set of case studies exemplifying the broad range of statis tical science used in environmental studies and application. The case studies can be used for graduate courses in environmental statistics, as a resource for courses in statistics using genuine examples to illustrate statistical methodol ogy and theory, and for courses in environmental science. Not only are these studies valuable for teaching about an essential cross-disciplinary activity but they can also be used to spur new research along directions exposed in these examples. The studies reported here resulted from a program of research carried on by the National Institute of Statistical Sciences (NISS) during the years 1992- 1996. NISS was created in 1991 as an initiative of the national statistics or ganizations, with the mission to renew and focus efforts of statistical science on important cross-disciplinary problems. One of NISS' first projects was a cooperative research effort with the U.S. Environmental Protection Agency (EPA) on problems of great interest to environmental science and regulation, surely one of today's most important cross-disciplinary activities. With the support and encouragement of Gary Foley, Director of the (then) U.S. EPA Atmospheric Research and Exposure Assessment Laboratory, a project and a research team were assembled by NISS that pursued a program which produced a set of results and products from which this book was drawn.

Case Studies in Bayesian Statistics

Case Studies in Bayesian Statistics PDF Author: Constantine Gatsonis
Publisher: Springer Science & Business Media
ISBN: 1461215021
Category : Mathematics
Languages : en
Pages : 436

Book Description
The 4th Workshop on Case Studies in Bayesian Statistics was held at the Car negie Mellon University campus on September 27-28, 1997. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the four invited case studies with the accompanying discus sion as well as nine contributed papers selected by a refereeing process. While most of the case studies in the volume come from biomedical research the reader will also find studies in environmental science and marketing research. INVITED PAPERS In Modeling Customer Survey Data, Linda A. Clark, William S. Cleveland, Lorraine Denby, and Chuanhai LiD use hierarchical modeling with time series components in for customer value analysis (CVA) data from Lucent Technologies. The data were derived from surveys of customers of the company and its competi tors, designed to assess relative performance on a spectrum of issues including product and service quality and pricing. The model provides a full description of the CVA data, with random location and scale effects for survey respondents and longitudinal company effects for each attribute. In addition to assessing the performance of specific companies, the model allows the empirical exploration of the conceptual basis of consumer value analysis. The authors place special em phasis on graphical displays for this complex, multivariate set of data and include a wealth of such plots in the paper.