Author: Adrian Kitai
Publisher: John Wiley & Sons
ISBN: 1119450993
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
The second edition of the text that offers an introduction to the principles of solar cells and LEDs, revised and updated The revised and updated second edition of Principles of Solar Cells, LEDs and Related Devices offers an introduction to the physical concepts required for a comprehensive understanding of p-n junction devices, light emitting diodes and solar cells. The author – a noted expert in the field – presents information on the semiconductor and junction device fundamentals and extends it to the practical implementation of semiconductors in both photovoltaic and LED devices. In addition, the text offers information on the treatment of a range of important semiconductor materials and device structures including OLED devices and organic solar cells. This second edition contains a new chapter on the quantum mechanical description of the electron that will make the book accessible to students in any engineering discipline. The text also includes a new chapter on bipolar junction and junction field effect transistors as well as expanded chapters on solar cells and LEDs that include more detailed information on high efficiency devices. This important text: Offers an introduction to solar cells and LEDs, the two most important applications of semiconductor diodes Provides a solid theoretical basis for p-n junction devices Contains updated information and new chapters including better coverage of LED out-coupling design and performance and improvements in OLED efficiency Presents student problems at the end of each chapter and worked example problems throughout the text Written for students in electrical engineering, physics and materials science and researchers in the electronics industry, Principles of Solar Cells, LEDs and Related Devices is the updated second edition that offers a guide to the physical concepts of p-n junction devices, light emitting diodes and solar cells.
Principles of Solar Cells, LEDs and Related Devices
Author: Adrian Kitai
Publisher: John Wiley & Sons
ISBN: 1119450993
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
The second edition of the text that offers an introduction to the principles of solar cells and LEDs, revised and updated The revised and updated second edition of Principles of Solar Cells, LEDs and Related Devices offers an introduction to the physical concepts required for a comprehensive understanding of p-n junction devices, light emitting diodes and solar cells. The author – a noted expert in the field – presents information on the semiconductor and junction device fundamentals and extends it to the practical implementation of semiconductors in both photovoltaic and LED devices. In addition, the text offers information on the treatment of a range of important semiconductor materials and device structures including OLED devices and organic solar cells. This second edition contains a new chapter on the quantum mechanical description of the electron that will make the book accessible to students in any engineering discipline. The text also includes a new chapter on bipolar junction and junction field effect transistors as well as expanded chapters on solar cells and LEDs that include more detailed information on high efficiency devices. This important text: Offers an introduction to solar cells and LEDs, the two most important applications of semiconductor diodes Provides a solid theoretical basis for p-n junction devices Contains updated information and new chapters including better coverage of LED out-coupling design and performance and improvements in OLED efficiency Presents student problems at the end of each chapter and worked example problems throughout the text Written for students in electrical engineering, physics and materials science and researchers in the electronics industry, Principles of Solar Cells, LEDs and Related Devices is the updated second edition that offers a guide to the physical concepts of p-n junction devices, light emitting diodes and solar cells.
Publisher: John Wiley & Sons
ISBN: 1119450993
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
The second edition of the text that offers an introduction to the principles of solar cells and LEDs, revised and updated The revised and updated second edition of Principles of Solar Cells, LEDs and Related Devices offers an introduction to the physical concepts required for a comprehensive understanding of p-n junction devices, light emitting diodes and solar cells. The author – a noted expert in the field – presents information on the semiconductor and junction device fundamentals and extends it to the practical implementation of semiconductors in both photovoltaic and LED devices. In addition, the text offers information on the treatment of a range of important semiconductor materials and device structures including OLED devices and organic solar cells. This second edition contains a new chapter on the quantum mechanical description of the electron that will make the book accessible to students in any engineering discipline. The text also includes a new chapter on bipolar junction and junction field effect transistors as well as expanded chapters on solar cells and LEDs that include more detailed information on high efficiency devices. This important text: Offers an introduction to solar cells and LEDs, the two most important applications of semiconductor diodes Provides a solid theoretical basis for p-n junction devices Contains updated information and new chapters including better coverage of LED out-coupling design and performance and improvements in OLED efficiency Presents student problems at the end of each chapter and worked example problems throughout the text Written for students in electrical engineering, physics and materials science and researchers in the electronics industry, Principles of Solar Cells, LEDs and Related Devices is the updated second edition that offers a guide to the physical concepts of p-n junction devices, light emitting diodes and solar cells.
Principles of Solar Cells, LEDs and Diodes
Author: Adrian Kitai
Publisher: John Wiley & Sons
ISBN: 1444318349
Category : Science
Languages : en
Pages : 333
Book Description
"The book will cover the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the PN junction at the senior undergraduate level. It will include: Review of semiconductor physics Introduction to PN diodesThe solar cell Physics of efficient conversion of sunlight into electrical energy Semiconductor solar cell materials and device physics Advanced solar cell materials and devices The light emitting diode Physics of efficient conversion of electrical energy into light Semiconductor light emitting diode materials and device physics Advanced light emitting diode materials and devices"--
Publisher: John Wiley & Sons
ISBN: 1444318349
Category : Science
Languages : en
Pages : 333
Book Description
"The book will cover the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the PN junction at the senior undergraduate level. It will include: Review of semiconductor physics Introduction to PN diodesThe solar cell Physics of efficient conversion of sunlight into electrical energy Semiconductor solar cell materials and device physics Advanced solar cell materials and devices The light emitting diode Physics of efficient conversion of electrical energy into light Semiconductor light emitting diode materials and device physics Advanced light emitting diode materials and devices"--
Physics of Solar Cells
Author: Peter Würfel
Publisher: John Wiley & Sons
ISBN: 352741309X
Category : Science
Languages : en
Pages : 288
Book Description
The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.
Publisher: John Wiley & Sons
ISBN: 352741309X
Category : Science
Languages : en
Pages : 288
Book Description
The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes
Author: Feng Gao
Publisher: Elsevier
ISBN: 0128136480
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes discusses the importance of nanomaterials as the active layers in solar cells and light emitting diodes (LEDs), along with the progress of nanomaterials as the electron and hole transporting layers. Specifically, the book reviews the use of nano-morphology of polymers, small molecules, and the organic-inorganic perovskites as the active layers in solar cells and LEDs. The design, fabrication and properties of metal-oxide-based nano-structures as electron and hole transporting layers are also reviewed. In addition, the development of plasmonic nanomaterials for solar cells and LEDs is discussed. Each topic in this book includes an overview of the materials system from principles to process. The advantages, disadvantages and related methodologies are highlighted. The book includes applications based on materials and emphasize how to improve the performance of solar cells and LEDs by the materials design, with a focus on nanomaterials. - Provides latest research on nanostructured materials including small molecules, polymers, organic-inorganic perovskites, and many other relevant materials systems for solar cells and LEDs - Addresses each promising materials system from principles to process, detailing the advantages and disadvantages of the most relevant methods of processing and fabrication - Looks ahead to most likely techniques to improve performance of solar cells and light emitting diodes
Publisher: Elsevier
ISBN: 0128136480
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes discusses the importance of nanomaterials as the active layers in solar cells and light emitting diodes (LEDs), along with the progress of nanomaterials as the electron and hole transporting layers. Specifically, the book reviews the use of nano-morphology of polymers, small molecules, and the organic-inorganic perovskites as the active layers in solar cells and LEDs. The design, fabrication and properties of metal-oxide-based nano-structures as electron and hole transporting layers are also reviewed. In addition, the development of plasmonic nanomaterials for solar cells and LEDs is discussed. Each topic in this book includes an overview of the materials system from principles to process. The advantages, disadvantages and related methodologies are highlighted. The book includes applications based on materials and emphasize how to improve the performance of solar cells and LEDs by the materials design, with a focus on nanomaterials. - Provides latest research on nanostructured materials including small molecules, polymers, organic-inorganic perovskites, and many other relevant materials systems for solar cells and LEDs - Addresses each promising materials system from principles to process, detailing the advantages and disadvantages of the most relevant methods of processing and fabrication - Looks ahead to most likely techniques to improve performance of solar cells and light emitting diodes
Electronic Processes in Organic Semiconductors
Author: Anna Köhler
Publisher: John Wiley & Sons
ISBN: 3527332928
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.
Publisher: John Wiley & Sons
ISBN: 3527332928
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.
Semiconductor Physical Electronics
Author: Sheng S. Li
Publisher: Springer Science & Business Media
ISBN: 146130489X
Category : Science
Languages : en
Pages : 514
Book Description
The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.
Publisher: Springer Science & Business Media
ISBN: 146130489X
Category : Science
Languages : en
Pages : 514
Book Description
The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.
The Physics Of Solar Cells
Author: Jenny A Nelson
Publisher: World Scientific Publishing Company
ISBN: 1848168233
Category : Science
Languages : en
Pages : 387
Book Description
This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.
Publisher: World Scientific Publishing Company
ISBN: 1848168233
Category : Science
Languages : en
Pages : 387
Book Description
This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.
Principles of Solar Cells, LEDs and Diodes
Author: Adrian Kitai
Publisher: John Wiley & Sons
ISBN: 1119975239
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
This textbook introduces the physical concepts required for a comprehensive understanding of p-n junction devices, light emitting diodes and solar cells. Semiconductor devices have made a major impact on the way we work and live. Today semiconductor p-n junction diode devices are experiencing substantial growth: solar cells are used on an unprecedented scale in the renewable energy industry; and light emitting diodes (LEDs) are revolutionizing energy efficient lighting. These two emerging industries based on p-n junctions make a significant contribution to the reduction in fossil fuel consumption. This book covers the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the p-n junction. The reader will gain a thorough understanding of p-n junctions as the text begins with semiconductor and junction device fundamentals and extends to the practical implementation of semiconductors in both photovoltaic and LED devices. Treatment of a range of important semiconductor materials and device structures is also presented in a readable manner. Topics are divided into the following six chapters: • Semiconductor Physics • The PN Junction Diode • Photon Emission and Absorption • The Solar Cell • Light Emitting Diodes • Organic Semiconductors, OLEDs and Solar Cells Containing student problems at the end of each chapter and worked example problems throughout, this textbook is intended for senior level undergraduate students doing courses in electrical engineering, physics and materials science. Researchers working on solar cells and LED devices, and those in the electronics industry would also benefit from the background information the book provides.
Publisher: John Wiley & Sons
ISBN: 1119975239
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
This textbook introduces the physical concepts required for a comprehensive understanding of p-n junction devices, light emitting diodes and solar cells. Semiconductor devices have made a major impact on the way we work and live. Today semiconductor p-n junction diode devices are experiencing substantial growth: solar cells are used on an unprecedented scale in the renewable energy industry; and light emitting diodes (LEDs) are revolutionizing energy efficient lighting. These two emerging industries based on p-n junctions make a significant contribution to the reduction in fossil fuel consumption. This book covers the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the p-n junction. The reader will gain a thorough understanding of p-n junctions as the text begins with semiconductor and junction device fundamentals and extends to the practical implementation of semiconductors in both photovoltaic and LED devices. Treatment of a range of important semiconductor materials and device structures is also presented in a readable manner. Topics are divided into the following six chapters: • Semiconductor Physics • The PN Junction Diode • Photon Emission and Absorption • The Solar Cell • Light Emitting Diodes • Organic Semiconductors, OLEDs and Solar Cells Containing student problems at the end of each chapter and worked example problems throughout, this textbook is intended for senior level undergraduate students doing courses in electrical engineering, physics and materials science. Researchers working on solar cells and LED devices, and those in the electronics industry would also benefit from the background information the book provides.
Organic Solar Cells
Author: Wolfgang Tress
Publisher: Springer
ISBN: 3319100971
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author’s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.
Publisher: Springer
ISBN: 3319100971
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author’s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.
Solar Cells
Author: Sandeep Arya
Publisher: Springer Nature
ISBN: 9819973333
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This book highlights developments in the field of solar cells. The chapters in this book address a wide range of topics including the spectrum of light received by solar cell devices, the basic functioning of a solar cell, and the evolution of solar cell technology during the last 50 years. It places particular emphasis on silicon solar cells, CIGS-based solar cells, organic solar cells, perovskite solar cells and hybrid solar cells. The book describes in detail the fabrication processes employed for different categories of solar cells. It also provides the characterization techniques utilized in this sector to evaluate the performance of solar cells and the scope of this domain in the future. Overall, it presents the essential theoretical and practical concepts of solar cells in an easy-to-understand manner.
Publisher: Springer Nature
ISBN: 9819973333
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This book highlights developments in the field of solar cells. The chapters in this book address a wide range of topics including the spectrum of light received by solar cell devices, the basic functioning of a solar cell, and the evolution of solar cell technology during the last 50 years. It places particular emphasis on silicon solar cells, CIGS-based solar cells, organic solar cells, perovskite solar cells and hybrid solar cells. The book describes in detail the fabrication processes employed for different categories of solar cells. It also provides the characterization techniques utilized in this sector to evaluate the performance of solar cells and the scope of this domain in the future. Overall, it presents the essential theoretical and practical concepts of solar cells in an easy-to-understand manner.