Author: Liang Guo
Publisher: Springer Nature
ISBN: 3030776778
Category : Technology & Engineering
Languages : en
Pages : 177
Book Description
This textbook fills a gap to supply students with the fundamental principles and tools they need to perform the quantitative analyses of the neuroelectrophysiological approaches, including both conventional and emerging ones, prevalently used in neuroscience research and neuroprosthetics. The content grows out of a course on Neuroengineering and Neuroprosthetics, which the author has taught already several times. The key problems the author addresses include (1) the universal operating mechanisms of neuroelectrophysiological approaches, (2) proper configuration of each approach, and (3) proper interpretation of the resulting signals. Efforts are made both to extract the universal principles underlying this common class of approaches and discern the unique properties of each individual approach. To address these important problems, equivalent electrical circuit modeling and signal analysis are used to unravel the functioning mechanisms and principles and provide sound interpretations to the associated signals and phenomena. This book aims to derive analytical solutions to these equivalent circuits, which can offer clear and complete mechanistic insights to the underlying biophysics.
Principles of Electrical Neural Interfacing
Principles of Electrical Neural Interfacing
Author: Liang Guo
Publisher:
ISBN: 9783030776787
Category :
Languages : en
Pages : 0
Book Description
This textbook fills a gap to supply students with the fundamental principles and tools they need to perform the quantitative analyses of the neuroelectrophysiological approaches, including both conventional and emerging ones, prevalently used in neuroscience research and neuroprosthetics. The content grows out of a course on Neuroengineering and Neuroprosthetics, which the author has taught already several times. The key problems the author addresses include (1) the universal operating mechanisms of neuroelectrophysiological approaches, (2) proper configuration of each approach, and (3) proper interpretation of the resulting signals. Efforts are made both to extract the universal principles underlying this common class of approaches and discern the unique properties of each individual approach. To address these important problems, equivalent electrical circuit modeling and signal analysis are used to unravel the functioning mechanisms and principles and provide sound interpretations to the associated signals and phenomena. This book aims to derive analytical solutions to these equivalent circuits, which can offer clear and complete mechanistic insights to the underlying biophysics. .
Publisher:
ISBN: 9783030776787
Category :
Languages : en
Pages : 0
Book Description
This textbook fills a gap to supply students with the fundamental principles and tools they need to perform the quantitative analyses of the neuroelectrophysiological approaches, including both conventional and emerging ones, prevalently used in neuroscience research and neuroprosthetics. The content grows out of a course on Neuroengineering and Neuroprosthetics, which the author has taught already several times. The key problems the author addresses include (1) the universal operating mechanisms of neuroelectrophysiological approaches, (2) proper configuration of each approach, and (3) proper interpretation of the resulting signals. Efforts are made both to extract the universal principles underlying this common class of approaches and discern the unique properties of each individual approach. To address these important problems, equivalent electrical circuit modeling and signal analysis are used to unravel the functioning mechanisms and principles and provide sound interpretations to the associated signals and phenomena. This book aims to derive analytical solutions to these equivalent circuits, which can offer clear and complete mechanistic insights to the underlying biophysics. .
Neural Interface Engineering
Author: Liang Guo
Publisher: Springer Nature
ISBN: 3030418545
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book’s unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.
Publisher: Springer Nature
ISBN: 3030418545
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book’s unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.
Neural Engineering
Author: Bin He
Publisher: Springer Science & Business Media
ISBN: 1461452279
Category : Technology & Engineering
Languages : en
Pages : 801
Book Description
Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.
Publisher: Springer Science & Business Media
ISBN: 1461452279
Category : Technology & Engineering
Languages : en
Pages : 801
Book Description
Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.
Indwelling Neural Implants
Author: William M. Reichert
Publisher: CRC Press
ISBN: 1420009303
Category : Medical
Languages : en
Pages : 300
Book Description
Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel
Publisher: CRC Press
ISBN: 1420009303
Category : Medical
Languages : en
Pages : 300
Book Description
Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel
Principles of Neural Design
Author: Peter Sterling
Publisher: MIT Press
ISBN: 0262028700
Category : Education
Languages : en
Pages : 567
Book Description
Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently. Setting out to "reverse engineer" the brain -- disassembling it to understand it -- Sterling and Laughlin first consider why an animal should need a brain, tracing computational abilities from bacterium to protozoan to worm. They examine bigger brains and the advantages of "anticipatory regulation"; identify constraints on neural design and the need to "nanofy"; and demonstrate the routes to efficiency in an integrated molecular system, phototransduction. They show that the principles of neural design at finer scales and lower levels apply at larger scales and higher levels; describe neural wiring efficiency; and discuss learning as a principle of biological design that includes "save only what is needed." Sterling and Laughlin avoid speculation about how the brain might work and endeavor to make sense of what is already known. Their distinctive contribution is to gather a coherent set of basic rules and exemplify them across spatial and functional scales.
Publisher: MIT Press
ISBN: 0262028700
Category : Education
Languages : en
Pages : 567
Book Description
Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently. Setting out to "reverse engineer" the brain -- disassembling it to understand it -- Sterling and Laughlin first consider why an animal should need a brain, tracing computational abilities from bacterium to protozoan to worm. They examine bigger brains and the advantages of "anticipatory regulation"; identify constraints on neural design and the need to "nanofy"; and demonstrate the routes to efficiency in an integrated molecular system, phototransduction. They show that the principles of neural design at finer scales and lower levels apply at larger scales and higher levels; describe neural wiring efficiency; and discuss learning as a principle of biological design that includes "save only what is needed." Sterling and Laughlin avoid speculation about how the brain might work and endeavor to make sense of what is already known. Their distinctive contribution is to gather a coherent set of basic rules and exemplify them across spatial and functional scales.
Neuroprosthetics
Author: Justin C. Sanchez
Publisher: CRC Press
ISBN: 1466553243
Category : Medical
Languages : en
Pages : 252
Book Description
Master the tools of design thinking using Neuroprosthetics: Principles and Applications. Developed from successfully tested material used in an undergraduate and graduate level course taught to biomedical engineering and neuroscience students, this book focuses on the use of direct neural sensing and stimulation as a therapeutic intervention for complex disorders of the brain. It covers the theory and applications behind neuroprosthetics and explores how neuroprosthetic design thinking can enhance value for users of a direct neural interface. The book explains the fundamentals of design thinking, introduces essential concepts from neuroscience and engineering illustrating the major components of neuroprosthetics, and presents practical applications. In addition to describing the approach of design thinking (based on facts about the user’s needs, desires, habits, attitudes, and experiences with neuroprosthetics), it also examines how effectively "human centered" neuroprosthetics can address people’s needs and interactions in their daily lives. Identifying concepts and features of devices that work well with users of a direct neural interface, this book: Outlines the signal sensing capabilities and trade-offs for common electrode designs, and determines the most appropriate electrode for any neuroprosthetic application Specifies neurosurgical techniques and how electronics should be tailored to capture neural signals Provides an understanding of the mechanisms of neural–electrode performance and information contained in neural signals Provides understanding of neural decoding in neuroprosthetic applications Describes the strategies that can be used to promote long-term therapeutic interventions for humans through the use of neuroprosthetics The first true primary text for undergraduate and graduate students in departments of neuroscience and bioengineering that covers the theory and applications behind this science, Neuroprosthetics: Principles and Applications provides the fundamental knowledge needed to understand how electrodes translate neural activity into signals that are useable by machines and enables readers to master the tools of design thinking and apply them to any neuroprosthetic application.
Publisher: CRC Press
ISBN: 1466553243
Category : Medical
Languages : en
Pages : 252
Book Description
Master the tools of design thinking using Neuroprosthetics: Principles and Applications. Developed from successfully tested material used in an undergraduate and graduate level course taught to biomedical engineering and neuroscience students, this book focuses on the use of direct neural sensing and stimulation as a therapeutic intervention for complex disorders of the brain. It covers the theory and applications behind neuroprosthetics and explores how neuroprosthetic design thinking can enhance value for users of a direct neural interface. The book explains the fundamentals of design thinking, introduces essential concepts from neuroscience and engineering illustrating the major components of neuroprosthetics, and presents practical applications. In addition to describing the approach of design thinking (based on facts about the user’s needs, desires, habits, attitudes, and experiences with neuroprosthetics), it also examines how effectively "human centered" neuroprosthetics can address people’s needs and interactions in their daily lives. Identifying concepts and features of devices that work well with users of a direct neural interface, this book: Outlines the signal sensing capabilities and trade-offs for common electrode designs, and determines the most appropriate electrode for any neuroprosthetic application Specifies neurosurgical techniques and how electronics should be tailored to capture neural signals Provides an understanding of the mechanisms of neural–electrode performance and information contained in neural signals Provides understanding of neural decoding in neuroprosthetic applications Describes the strategies that can be used to promote long-term therapeutic interventions for humans through the use of neuroprosthetics The first true primary text for undergraduate and graduate students in departments of neuroscience and bioengineering that covers the theory and applications behind this science, Neuroprosthetics: Principles and Applications provides the fundamental knowledge needed to understand how electrodes translate neural activity into signals that are useable by machines and enables readers to master the tools of design thinking and apply them to any neuroprosthetic application.
Brain Stimulation
Author: David T. Brocker
Publisher: Elsevier Inc. Chapters
ISBN: 0128080078
Category : Medical
Languages : en
Pages : 41
Book Description
Deep brain stimulation is a remarkable therapy that has mainstreamed electrical stimulation of the brain for the treatment of neurological dysfunction. To appreciate the mechanisms of deep brain stimulation, we need to understand the excitability of neural tissue. Here, we survey the pertinent principles of electrical excitation in the brain. The amount of current delivered and the tissue conductivity together determine the strength and extent of potentials generated by stimulation. The electrode–tissue interface is an important junction where electrical charge carriers in the stimulation hardware are converted to ionic charge carriers in the tissue. Cathodic stimulation tends to depolarize neural elements more easily than anodic stimulation. The current–distance relationship describes how the amount of current needed to excite an axon increases as a function of its distance from the electrode. This relationship also depends on the axon’s diameter because large-diameter axons are excited more easily than small-diameter axons. For a given axon, the strength–duration relationship describes the inverse relationship between threshold current amplitude and pulse duration. Specific stimulation parameters must be considered to avoid stimulation-induced tissue damage. A strong foundation in these principles facilitates understanding of the complex effects of electrical stimulation in the brain.
Publisher: Elsevier Inc. Chapters
ISBN: 0128080078
Category : Medical
Languages : en
Pages : 41
Book Description
Deep brain stimulation is a remarkable therapy that has mainstreamed electrical stimulation of the brain for the treatment of neurological dysfunction. To appreciate the mechanisms of deep brain stimulation, we need to understand the excitability of neural tissue. Here, we survey the pertinent principles of electrical excitation in the brain. The amount of current delivered and the tissue conductivity together determine the strength and extent of potentials generated by stimulation. The electrode–tissue interface is an important junction where electrical charge carriers in the stimulation hardware are converted to ionic charge carriers in the tissue. Cathodic stimulation tends to depolarize neural elements more easily than anodic stimulation. The current–distance relationship describes how the amount of current needed to excite an axon increases as a function of its distance from the electrode. This relationship also depends on the axon’s diameter because large-diameter axons are excited more easily than small-diameter axons. For a given axon, the strength–duration relationship describes the inverse relationship between threshold current amplitude and pulse duration. Specific stimulation parameters must be considered to avoid stimulation-induced tissue damage. A strong foundation in these principles facilitates understanding of the complex effects of electrical stimulation in the brain.
High-Density Integrated Electrocortical Neural Interfaces
Author: Sohmyung Ha
Publisher: Academic Press
ISBN: 0128151161
Category : Science
Languages : en
Pages : 212
Book Description
High-Density Integrated Electrocortical Neural Interfaces provides a basic understanding, design strategies and implementation applications for electrocortical neural interfaces with a focus on integrated circuit design technologies. A wide variety of topics associated with the design and application of electrocortical neural implants are covered in this book. Written by leading experts in the field— Dr. Sohmyung Ha, Dr. Chul Kim, Dr. Patrick P. Mercier and Dr. Gert Cauwenberghs —the book discusses basic principles and practical design strategies of electrocorticography, electrode interfaces, signal acquisition, power delivery, data communication, and stimulation. In addition, an overview and critical review of the state-of-the-art research is included. These methodologies present a path towards the development of minimally invasive brain-computer interfaces capable of resolving microscale neural activity with wide-ranging coverage across the cortical surface. - Written by leading researchers in electrocorticography in brain-computer interfaces - Offers a unique focus on neural interface circuit design, from electrode to interface, circuit, powering, communication and encapsulation - Covers the newest ECoG interface systems and electrode interfaces for ECoG and biopotential sensing
Publisher: Academic Press
ISBN: 0128151161
Category : Science
Languages : en
Pages : 212
Book Description
High-Density Integrated Electrocortical Neural Interfaces provides a basic understanding, design strategies and implementation applications for electrocortical neural interfaces with a focus on integrated circuit design technologies. A wide variety of topics associated with the design and application of electrocortical neural implants are covered in this book. Written by leading experts in the field— Dr. Sohmyung Ha, Dr. Chul Kim, Dr. Patrick P. Mercier and Dr. Gert Cauwenberghs —the book discusses basic principles and practical design strategies of electrocorticography, electrode interfaces, signal acquisition, power delivery, data communication, and stimulation. In addition, an overview and critical review of the state-of-the-art research is included. These methodologies present a path towards the development of minimally invasive brain-computer interfaces capable of resolving microscale neural activity with wide-ranging coverage across the cortical surface. - Written by leading researchers in electrocorticography in brain-computer interfaces - Offers a unique focus on neural interface circuit design, from electrode to interface, circuit, powering, communication and encapsulation - Covers the newest ECoG interface systems and electrode interfaces for ECoG and biopotential sensing
Neurobionics
Author: Robert K. Shepherd
Publisher: Wiley-Blackwell
ISBN: 9781118814871
Category : Science
Languages : en
Pages : 0
Book Description
Technological advances have greatly increased the potential for, and practicability of, using medical neurotechnologies to revolutionize how a wide array of neurological and nervous system diseases and dysfunctions are treated. These technologies have the potential to help reduce the impact of symptoms in neurological disorders such as Parkinson’s Disease and depression as well as help regain lost function caused by spinal cord damage or nerve damage. Medical Neurobionics is a concise overview of the biological underpinnings of neurotechnologies, the development process for these technologies, and the practical application of these advances in clinical settings. Medical Neurobionics is divided into three sections. The first section focuses specifically on providing a sound foundational understanding of the biological mechanisms that support the development of neurotechnologies. The second section looks at the efforts being carried out to develop new and exciting bioengineering advances. The book then closes with chapters that discuss practical clinical application and explore the ethical questions that surround neurobionics. A timely work that provides readers with a useful introduction to the field, Medical Neurobionics will be an essential book for neuroscientists, neuroengineers, biomedical researchers, and industry personnel.
Publisher: Wiley-Blackwell
ISBN: 9781118814871
Category : Science
Languages : en
Pages : 0
Book Description
Technological advances have greatly increased the potential for, and practicability of, using medical neurotechnologies to revolutionize how a wide array of neurological and nervous system diseases and dysfunctions are treated. These technologies have the potential to help reduce the impact of symptoms in neurological disorders such as Parkinson’s Disease and depression as well as help regain lost function caused by spinal cord damage or nerve damage. Medical Neurobionics is a concise overview of the biological underpinnings of neurotechnologies, the development process for these technologies, and the practical application of these advances in clinical settings. Medical Neurobionics is divided into three sections. The first section focuses specifically on providing a sound foundational understanding of the biological mechanisms that support the development of neurotechnologies. The second section looks at the efforts being carried out to develop new and exciting bioengineering advances. The book then closes with chapters that discuss practical clinical application and explore the ethical questions that surround neurobionics. A timely work that provides readers with a useful introduction to the field, Medical Neurobionics will be an essential book for neuroscientists, neuroengineers, biomedical researchers, and industry personnel.