Author: Chuan-Chong Chen
Publisher: World Scientific
ISBN: 9789810211394
Category : Mathematics
Languages : en
Pages : 314
Book Description
A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.
Principles and Techniques in Combinatorics
Author: Chuan-Chong Chen
Publisher: World Scientific
ISBN: 9789810211394
Category : Mathematics
Languages : en
Pages : 314
Book Description
A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.
Publisher: World Scientific
ISBN: 9789810211394
Category : Mathematics
Languages : en
Pages : 314
Book Description
A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.
Principles And Techniques In Combinatorics - Solutions Manual
Author: Kean Pew Foo
Publisher: World Scientific
ISBN: 9813238860
Category : Mathematics
Languages : en
Pages : 439
Book Description
The solutions to each problem are written from a first principles approach, which would further augment the understanding of the important and recurring concepts in each chapter. Moreover, the solutions are written in a relatively self-contained manner, with very little knowledge of undergraduate mathematics assumed. In that regard, the solutions manual appeals to a wide range of readers, from secondary school and junior college students, undergraduates, to teachers and professors.
Publisher: World Scientific
ISBN: 9813238860
Category : Mathematics
Languages : en
Pages : 439
Book Description
The solutions to each problem are written from a first principles approach, which would further augment the understanding of the important and recurring concepts in each chapter. Moreover, the solutions are written in a relatively self-contained manner, with very little knowledge of undergraduate mathematics assumed. In that regard, the solutions manual appeals to a wide range of readers, from secondary school and junior college students, undergraduates, to teachers and professors.
A Course in Combinatorics
Author: J. H. van Lint
Publisher: Cambridge University Press
ISBN: 9780521006019
Category : Mathematics
Languages : en
Pages : 620
Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.
Publisher: Cambridge University Press
ISBN: 9780521006019
Category : Mathematics
Languages : en
Pages : 620
Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.
Combinatorics
Author: Peter Jephson Cameron
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372
Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372
Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
Counting: The Art of Enumerative Combinatorics
Author: George E. Martin
Publisher: Springer Science & Business Media
ISBN: 1475748787
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book provides an introduction to discrete mathematics. At the end of the book the reader should be able to answer counting questions such as: How many ways are there to stack n poker chips, each of which can be red, white, blue, or green, such that each red chip is adjacent to at least 1 green chip? The book can be used as a textbook for a semester course at the sophomore level. The first five chapters can also serve as a basis for a graduate course for in-service teachers.
Publisher: Springer Science & Business Media
ISBN: 1475748787
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book provides an introduction to discrete mathematics. At the end of the book the reader should be able to answer counting questions such as: How many ways are there to stack n poker chips, each of which can be red, white, blue, or green, such that each red chip is adjacent to at least 1 green chip? The book can be used as a textbook for a semester course at the sophomore level. The first five chapters can also serve as a basis for a graduate course for in-service teachers.
A Path to Combinatorics for Undergraduates
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 081768154X
Category : Mathematics
Languages : en
Pages : 235
Book Description
This unique approach to combinatorics is centered around unconventional, essay-type combinatorial examples, followed by a number of carefully selected, challenging problems and extensive discussions of their solutions. Topics encompass permutations and combinations, binomial coefficients and their applications, bijections, inclusions and exclusions, and generating functions. Each chapter features fully-worked problems, including many from Olympiads and other competitions, as well as a number of problems original to the authors; at the end of each chapter are further exercises to reinforce understanding, encourage creativity, and build a repertory of problem-solving techniques. The authors' previous text, "102 Combinatorial Problems," makes a fine companion volume to the present work, which is ideal for Olympiad participants and coaches, advanced high school students, undergraduates, and college instructors. The book's unusual problems and examples will interest seasoned mathematicians as well. "A Path to Combinatorics for Undergraduates" is a lively introduction not only to combinatorics, but to mathematical ingenuity, rigor, and the joy of solving puzzles.
Publisher: Springer Science & Business Media
ISBN: 081768154X
Category : Mathematics
Languages : en
Pages : 235
Book Description
This unique approach to combinatorics is centered around unconventional, essay-type combinatorial examples, followed by a number of carefully selected, challenging problems and extensive discussions of their solutions. Topics encompass permutations and combinations, binomial coefficients and their applications, bijections, inclusions and exclusions, and generating functions. Each chapter features fully-worked problems, including many from Olympiads and other competitions, as well as a number of problems original to the authors; at the end of each chapter are further exercises to reinforce understanding, encourage creativity, and build a repertory of problem-solving techniques. The authors' previous text, "102 Combinatorial Problems," makes a fine companion volume to the present work, which is ideal for Olympiad participants and coaches, advanced high school students, undergraduates, and college instructors. The book's unusual problems and examples will interest seasoned mathematicians as well. "A Path to Combinatorics for Undergraduates" is a lively introduction not only to combinatorics, but to mathematical ingenuity, rigor, and the joy of solving puzzles.
A Walk Through Combinatorics
Author: Mikl¢s B¢na
Publisher: World Scientific
ISBN: 9812568859
Category : Mathematics
Languages : en
Pages : 492
Book Description
This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course. Just as with the first edition, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible for the talented and hard-working undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings and Eulerian and Hamiltonian cycles. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, and algorithms and complexity. As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.
Publisher: World Scientific
ISBN: 9812568859
Category : Mathematics
Languages : en
Pages : 492
Book Description
This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course. Just as with the first edition, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible for the talented and hard-working undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings and Eulerian and Hamiltonian cycles. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, and algorithms and complexity. As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.
Walk Through Combinatorics, A: An Introduction To Enumeration And Graph Theory (Third Edition)
Author: Miklos Bona
Publisher: World Scientific Publishing Company
ISBN: 9813100729
Category : Mathematics
Languages : en
Pages : 567
Book Description
This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first two editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs (new to this edition), enumeration under group action (new to this edition), generating functions of labeled and unlabeled structures and algorithms and complexity.As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected].
Publisher: World Scientific Publishing Company
ISBN: 9813100729
Category : Mathematics
Languages : en
Pages : 567
Book Description
This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first two editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs (new to this edition), enumeration under group action (new to this edition), generating functions of labeled and unlabeled structures and algorithms and complexity.As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected].
Principles of Combinatorics
Author: Berge
Publisher: Academic Press
ISBN: 0080955819
Category : Computers
Languages : en
Pages : 189
Book Description
Berge's Principles of Combinatorics is now an acknowledged classic work of the field. Complementary to his previous books, Berge's introduction deals largely with enumeration. The choice of topics is balanced, the presentation elegant, and the text can be followed by anyone with an interest in the subject with only a little algebra required as a background. Some topics were here described for the first time, including Robinston-Shensted theorum, the Eden-Schutzenberger theorum, and facts connecting Young diagrams, trees, and the symmetric group.
Publisher: Academic Press
ISBN: 0080955819
Category : Computers
Languages : en
Pages : 189
Book Description
Berge's Principles of Combinatorics is now an acknowledged classic work of the field. Complementary to his previous books, Berge's introduction deals largely with enumeration. The choice of topics is balanced, the presentation elegant, and the text can be followed by anyone with an interest in the subject with only a little algebra required as a background. Some topics were here described for the first time, including Robinston-Shensted theorum, the Eden-Schutzenberger theorum, and facts connecting Young diagrams, trees, and the symmetric group.
Combinatorics
Author: Daniel A. Marcus
Publisher: American Mathematical Soc.
ISBN: 0883859815
Category : Mathematics
Languages : en
Pages : 148
Book Description
The format of this book is unique in that it combines features of a traditional text with those of a problem book. The material is presented through a series of problems, about 250 in all, with connecting text; this is supplemented by 250 additional problems suitable for homework assignment. The problems are structured in order to introduce concepts in a logical order and in a thought-provoking way. The first four sections of the book deal with basic combinatorial entities; the last four cover special counting methods. Many applications to probability are included along the way. Students from a wide range of backgrounds--mathematics, computer science, or engineering--will appreciate this appealing introduction.
Publisher: American Mathematical Soc.
ISBN: 0883859815
Category : Mathematics
Languages : en
Pages : 148
Book Description
The format of this book is unique in that it combines features of a traditional text with those of a problem book. The material is presented through a series of problems, about 250 in all, with connecting text; this is supplemented by 250 additional problems suitable for homework assignment. The problems are structured in order to introduce concepts in a logical order and in a thought-provoking way. The first four sections of the book deal with basic combinatorial entities; the last four cover special counting methods. Many applications to probability are included along the way. Students from a wide range of backgrounds--mathematics, computer science, or engineering--will appreciate this appealing introduction.