Author: Derek Rowntree
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 199
Book Description
Statistics Without Tears
Author: Derek Rowntree
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 199
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 199
Book Description
A Mathematical Primer for Social Statistics
Author: John Fox
Publisher: SAGE
ISBN: 1412960800
Category : Social Science
Languages : en
Pages : 185
Book Description
The ideal primer for students and researchers across the social sciences who wish to master the necessary maths in order to pursue studies involving advanced statistical methods
Publisher: SAGE
ISBN: 1412960800
Category : Social Science
Languages : en
Pages : 185
Book Description
The ideal primer for students and researchers across the social sciences who wish to master the necessary maths in order to pursue studies involving advanced statistical methods
A Primer on Statistical Distributions
Author: Narayanaswamy Balakrishnan
Publisher: John Wiley & Sons
ISBN: 0471722219
Category : Mathematics
Languages : en
Pages : 322
Book Description
Designed as an introduction to statistical distribution theory. * Includes a first chapter on basic notations and definitions that are essential to working with distributions. * Remaining chapters are divided into three parts: Discrete Distributions, Continuous Distributions, and Multivariate Distributions. * Exercises are incorporated throughout the text in order to enhance understanding of materials just taught.
Publisher: John Wiley & Sons
ISBN: 0471722219
Category : Mathematics
Languages : en
Pages : 322
Book Description
Designed as an introduction to statistical distribution theory. * Includes a first chapter on basic notations and definitions that are essential to working with distributions. * Remaining chapters are divided into three parts: Discrete Distributions, Continuous Distributions, and Multivariate Distributions. * Exercises are incorporated throughout the text in order to enhance understanding of materials just taught.
Elements of Statistics
Author: Raghubar D. Sharma
Publisher: Cambridge Scholars Publishing
ISBN: 9781527573550
Category :
Languages : en
Pages :
Book Description
This book represents a crucial resource for students taking a required statistics course who are intimidated by statistical symbols, formulae, and daunting equations. It will serve to prepare the reader to achieve the level of statistical literacy required not only to understand basic statistics, but also to embark on their advanced-level statistics courses without anxiety. The application of statistics in social research has recently become imperative. However, a gap usually exists between the time when students take their first statistics course and when they engage in their first serious research project, meaning that they often donâ (TM)t remember basic statistics well enough to apply it effectively in their research. In this sense, this book will also serve as an excellent â oedesk reference, â â oerefresher, â or â oecore conceptâ text for burgeoning researchers interning or working as a research assistant or research associate. Furthermore, the text is written in a self-help, hands-on learning style so the reader can easily attain the skills needed to achieve a basic understanding of statistics found in articles and presentations.
Publisher: Cambridge Scholars Publishing
ISBN: 9781527573550
Category :
Languages : en
Pages :
Book Description
This book represents a crucial resource for students taking a required statistics course who are intimidated by statistical symbols, formulae, and daunting equations. It will serve to prepare the reader to achieve the level of statistical literacy required not only to understand basic statistics, but also to embark on their advanced-level statistics courses without anxiety. The application of statistics in social research has recently become imperative. However, a gap usually exists between the time when students take their first statistics course and when they engage in their first serious research project, meaning that they often donâ (TM)t remember basic statistics well enough to apply it effectively in their research. In this sense, this book will also serve as an excellent â oedesk reference, â â oerefresher, â or â oecore conceptâ text for burgeoning researchers interning or working as a research assistant or research associate. Furthermore, the text is written in a self-help, hands-on learning style so the reader can easily attain the skills needed to achieve a basic understanding of statistics found in articles and presentations.
A Mathematical Primer for Social Statistics
Author: John Fox
Publisher: SAGE Publications
ISBN: 1071833243
Category : Social Science
Languages : en
Pages : 199
Book Description
A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.
Publisher: SAGE Publications
ISBN: 1071833243
Category : Social Science
Languages : en
Pages : 199
Book Description
A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.
A Primer of Multivariate Statistics
Author: Richard J. Harris
Publisher: Psychology Press
ISBN: 1135555435
Category : Psychology
Languages : en
Pages : 632
Book Description
Drawing upon more than 30 years of experience in working with statistics, Dr. Richard J. Harris has updated A Primer of Multivariate Statistics to provide a model of balance between how-to and why. This classic text covers multivariate techniques with a taste of latent variable approaches. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis. This edition retains its conversational writing style while focusing on classical techniques. The book gives the reader a feel for why one should consider diving into more detailed treatments of computer-modeling and latent-variable techniques, such as non-recursive path analysis, confirmatory factor analysis, and hierarchical linear modeling. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis.
Publisher: Psychology Press
ISBN: 1135555435
Category : Psychology
Languages : en
Pages : 632
Book Description
Drawing upon more than 30 years of experience in working with statistics, Dr. Richard J. Harris has updated A Primer of Multivariate Statistics to provide a model of balance between how-to and why. This classic text covers multivariate techniques with a taste of latent variable approaches. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis. This edition retains its conversational writing style while focusing on classical techniques. The book gives the reader a feel for why one should consider diving into more detailed treatments of computer-modeling and latent-variable techniques, such as non-recursive path analysis, confirmatory factor analysis, and hierarchical linear modeling. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis.
Causal Inference in Statistics
Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Statistical Thinking from Scratch
Author: M. D. Edge
Publisher:
ISBN: 0198827628
Category : Mathematics
Languages : en
Pages : 318
Book Description
Focuses on detailed instruction in a single statistical technique, simple linear regression (SLR), with the goal of gaining tools, understanding, and intuition that can be applied to other contexts.
Publisher:
ISBN: 0198827628
Category : Mathematics
Languages : en
Pages : 318
Book Description
Focuses on detailed instruction in a single statistical technique, simple linear regression (SLR), with the goal of gaining tools, understanding, and intuition that can be applied to other contexts.
Statistics in MATLAB
Author: MoonJung Cho
Publisher: CRC Press
ISBN: 1466596570
Category : Business & Economics
Languages : en
Pages : 280
Book Description
This primer provides an accessible introduction to MATLAB version 8 and its extensive functionality for statistics. Fulfilling the need for a practical user's guide, the book covers capabilities in the main MATLAB package, the Statistics Toolbox, and the student version of MATLAB, presenting examples of how MATLAB can be used to analyze data. It explains how to determine what method should be used for analysis, and includes figures, visual aids, and access to a companion website with data sets and additional examples.
Publisher: CRC Press
ISBN: 1466596570
Category : Business & Economics
Languages : en
Pages : 280
Book Description
This primer provides an accessible introduction to MATLAB version 8 and its extensive functionality for statistics. Fulfilling the need for a practical user's guide, the book covers capabilities in the main MATLAB package, the Statistics Toolbox, and the student version of MATLAB, presenting examples of how MATLAB can be used to analyze data. It explains how to determine what method should be used for analysis, and includes figures, visual aids, and access to a companion website with data sets and additional examples.
A Primer of Ecological Statistics
Author: Nicholas J. Gotelli
Publisher: Sinauer
ISBN: 9781605350646
Category : Science
Languages : en
Pages : 0
Book Description
A Primer of Ecological Statistics, Second Edition explains fundamental material in probability theory, experimental design, and parameter estimation for ecologists and environmental scientists. The book emphasizes a general introduction to probability theory and provides a detailed discussion of specific designs and analyses that are typically encountered in ecology and environmental science. Appropriate for use as either a stand-alone or supplementary text for upper-division undergraduate or graduate courses in ecological and environmental statistics, ecology, environmental science, environmental studies, or experimental design, the Primer also serves as a resource for environmental professionals who need to use and interpret statistics daily but have little or no formal training in the subject. The book is divided into four parts. Part I discusses the fundamentals of probability and statistical thinking. It introduces the logic and language of probability (Chapter 1), explains common statistical distributions used in ecology (Chapter 2) and important measures of central tendency and spread (Chapter 3), explains P-values, hypothesis testing, and statistical errors (Chapter 4), and introduces frequentist, Bayesian, and Monte Carlo methods of analysis (Chapter 5). Part II discusses how to successfully design and execute field experiments and sampling studies. Topics include design strategies (Chapter 6), a 'bestiary' of experimental designs (Chapter 7), and transformations and data management (Chapter 8). Part III discusses specific analyses, and covers the material that is the main core of most statistics texts. Topics include regression (Chapter 9), analysis of variance (Chapter 10), categorical data analysis (Chapter 11), and multivariate analysis (Chapter 12). Part IV—new to this edition—discusses two central topics in estimating important ecological metrics. Topics include quantification of biological diversity (Chapter 13) and estimating occupancy, detection probability, and population sizes from marked and unmarked populations (Chapter 14). The book includes a comprehensive glossary, a mathematical appendix on matrix algebra, and extensively annotated tables and figures. Footnotes introduce advanced and ancillary material: some are purely historical, others cover mathematical/statistical proofs or details, and still others address current topics in the ecological literature. Data files and code used for some of the examples, as well as errata, are available online.
Publisher: Sinauer
ISBN: 9781605350646
Category : Science
Languages : en
Pages : 0
Book Description
A Primer of Ecological Statistics, Second Edition explains fundamental material in probability theory, experimental design, and parameter estimation for ecologists and environmental scientists. The book emphasizes a general introduction to probability theory and provides a detailed discussion of specific designs and analyses that are typically encountered in ecology and environmental science. Appropriate for use as either a stand-alone or supplementary text for upper-division undergraduate or graduate courses in ecological and environmental statistics, ecology, environmental science, environmental studies, or experimental design, the Primer also serves as a resource for environmental professionals who need to use and interpret statistics daily but have little or no formal training in the subject. The book is divided into four parts. Part I discusses the fundamentals of probability and statistical thinking. It introduces the logic and language of probability (Chapter 1), explains common statistical distributions used in ecology (Chapter 2) and important measures of central tendency and spread (Chapter 3), explains P-values, hypothesis testing, and statistical errors (Chapter 4), and introduces frequentist, Bayesian, and Monte Carlo methods of analysis (Chapter 5). Part II discusses how to successfully design and execute field experiments and sampling studies. Topics include design strategies (Chapter 6), a 'bestiary' of experimental designs (Chapter 7), and transformations and data management (Chapter 8). Part III discusses specific analyses, and covers the material that is the main core of most statistics texts. Topics include regression (Chapter 9), analysis of variance (Chapter 10), categorical data analysis (Chapter 11), and multivariate analysis (Chapter 12). Part IV—new to this edition—discusses two central topics in estimating important ecological metrics. Topics include quantification of biological diversity (Chapter 13) and estimating occupancy, detection probability, and population sizes from marked and unmarked populations (Chapter 14). The book includes a comprehensive glossary, a mathematical appendix on matrix algebra, and extensively annotated tables and figures. Footnotes introduce advanced and ancillary material: some are purely historical, others cover mathematical/statistical proofs or details, and still others address current topics in the ecological literature. Data files and code used for some of the examples, as well as errata, are available online.