Author: Stephen J. Wright
Publisher: SIAM
ISBN: 9781611971453
Category : Interior-point methods
Languages : en
Pages : 309
Book Description
In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.
Primal-dual Interior-Point Methods
Author: Stephen J. Wright
Publisher: SIAM
ISBN: 9781611971453
Category : Interior-point methods
Languages : en
Pages : 309
Book Description
In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.
Publisher: SIAM
ISBN: 9781611971453
Category : Interior-point methods
Languages : en
Pages : 309
Book Description
In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.
Progress in Mathematical Programming
Author: Nimrod Megiddo
Publisher: Springer Science & Business Media
ISBN: 1461396174
Category : Mathematics
Languages : en
Pages : 164
Book Description
The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."
Publisher: Springer Science & Business Media
ISBN: 1461396174
Category : Mathematics
Languages : en
Pages : 164
Book Description
The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."
The Design of Competitive Online Algorithms Via a Primal-Dual Approach
Author: Niv Buchbinder
Publisher: Now Publishers Inc
ISBN: 160198216X
Category : Computers
Languages : en
Pages : 190
Book Description
Extends the primal-dual method to the setting of online algorithms, and shows its applicability to a wide variety of fundamental problems.
Publisher: Now Publishers Inc
ISBN: 160198216X
Category : Computers
Languages : en
Pages : 190
Book Description
Extends the primal-dual method to the setting of online algorithms, and shows its applicability to a wide variety of fundamental problems.
Linear Optimization and Extensions
Author: Manfred Padberg
Publisher: Springer Science & Business Media
ISBN: 3662122731
Category : Mathematics
Languages : en
Pages : 521
Book Description
From the reviews: "Do you know M.Padberg's Linear Optimization and Extensions? [...] Now here is the continuation of it, discussing the solutions of all its exercises and with detailed analysis of the applications mentioned. Tell your students about it. [...] For those who strive for good exercises and case studies for LP this is an excellent volume." Acta Scientiarum Mathematicarum
Publisher: Springer Science & Business Media
ISBN: 3662122731
Category : Mathematics
Languages : en
Pages : 521
Book Description
From the reviews: "Do you know M.Padberg's Linear Optimization and Extensions? [...] Now here is the continuation of it, discussing the solutions of all its exercises and with detailed analysis of the applications mentioned. Tell your students about it. [...] For those who strive for good exercises and case studies for LP this is an excellent volume." Acta Scientiarum Mathematicarum
Theory of Linear and Integer Programming
Author: Alexander Schrijver
Publisher: John Wiley & Sons
ISBN: 9780471982326
Category : Mathematics
Languages : en
Pages : 488
Book Description
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
Publisher: John Wiley & Sons
ISBN: 9780471982326
Category : Mathematics
Languages : en
Pages : 488
Book Description
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
The Design of Approximation Algorithms
Author: David P. Williamson
Publisher: Cambridge University Press
ISBN: 9780521195270
Category : Computers
Languages : en
Pages : 518
Book Description
Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.
Publisher: Cambridge University Press
ISBN: 9780521195270
Category : Computers
Languages : en
Pages : 518
Book Description
Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.
Linear Inequalities and Related Systems. (AM-38), Volume 38
Author: Harold William Kuhn
Publisher: Princeton University Press
ISBN: 1400881986
Category : Mathematics
Languages : en
Pages : 346
Book Description
The description for this book, Linear Inequalities and Related Systems. (AM-38), Volume 38, will be forthcoming.
Publisher: Princeton University Press
ISBN: 1400881986
Category : Mathematics
Languages : en
Pages : 346
Book Description
The description for this book, Linear Inequalities and Related Systems. (AM-38), Volume 38, will be forthcoming.
Interior Point Algorithms
Author: Yinyu Ye
Publisher: John Wiley & Sons
ISBN: 1118030958
Category : Mathematics
Languages : en
Pages : 440
Book Description
The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.
Publisher: John Wiley & Sons
ISBN: 1118030958
Category : Mathematics
Languages : en
Pages : 440
Book Description
The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.
Linear Programming
Author: Robert J Vanderbei
Publisher: Springer Science & Business Media
ISBN: 1461476305
Category : Business & Economics
Languages : en
Pages : 420
Book Description
This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Readers will discover a host of practical business applications as well as non-business applications. Topics are clearly developed with many numerical examples worked out in detail. Specific examples and concrete algorithms precede more abstract topics. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered, including the two-phase simplex method, primal-dual simplex method, path-following interior-point method, and homogeneous self-dual methods. In addition, the author provides online JAVA applets that illustrate various pivot rules and variants of the simplex method, both for linear programming and for network flows. These C programs and JAVA tools can be found on the book's website. The website also includes new online instructional tools and exercises.
Publisher: Springer Science & Business Media
ISBN: 1461476305
Category : Business & Economics
Languages : en
Pages : 420
Book Description
This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Readers will discover a host of practical business applications as well as non-business applications. Topics are clearly developed with many numerical examples worked out in detail. Specific examples and concrete algorithms precede more abstract topics. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered, including the two-phase simplex method, primal-dual simplex method, path-following interior-point method, and homogeneous self-dual methods. In addition, the author provides online JAVA applets that illustrate various pivot rules and variants of the simplex method, both for linear programming and for network flows. These C programs and JAVA tools can be found on the book's website. The website also includes new online instructional tools and exercises.
Linear Optimization and Duality
Author: Craig A. Tovey
Publisher: CRC Press
ISBN: 1439887470
Category : Business & Economics
Languages : en
Pages : 587
Book Description
Linear Optimization and Dualiyy: A Modern Exposition departs from convention in significant ways. Standard linear programming textbooks present the material in the order in which it was discovered. Duality is treated as a difficult add-on after coverage of formulation, the simplex method, and polyhedral theory. Students end up without knowing duality in their bones. This text brings in duality in Chapter 1 and carries duality all the way through the exposition. Chapter 1 gives a general definition of duality that shows the dual aspects of a matrix as a column of rows and a row of columns. The proof of weak duality in Chapter 2 is shown via the Lagrangian, which relies on matrix duality. The first three LP formulation examples in Chapter 3 are classic primal-dual pairs including the diet problem and 2-person zero sum games. For many engineering students, optimization is their first immersion in rigorous mathematics. Conventional texts assume a level of mathematical sophistication they don’t have. This text embeds dozens of reading tips and hundreds of answered questions to guide such students. Features Emphasis on duality throughout Practical tips for modeling and computation Coverage of computational complexity and data structures Exercises and problems based on the learning theory concept of the zone of proximal development Guidance for the mathematically unsophisticated reader About the Author Craig A. Tovey is a professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Institute of Technology. Dr. Tovey received an AB from Harvard College, an MS in computer science and a PhD in operations research from Stanford University. His principal activities are in operations research and its interdisciplinary applications. He received a Presidential Young Investigator Award and the Jacob Wolfowitz Prize for research in heuristics. He was named an Institute Fellow at Georgia Tech, and was recognized by the ACM Special Interest Group on Electronic Commerce with the Test of Time Award. Dr. Tovey received the 2016 Golden Goose Award for his research on bee foraging behavior leading to the development of the Honey Bee Algorithm.
Publisher: CRC Press
ISBN: 1439887470
Category : Business & Economics
Languages : en
Pages : 587
Book Description
Linear Optimization and Dualiyy: A Modern Exposition departs from convention in significant ways. Standard linear programming textbooks present the material in the order in which it was discovered. Duality is treated as a difficult add-on after coverage of formulation, the simplex method, and polyhedral theory. Students end up without knowing duality in their bones. This text brings in duality in Chapter 1 and carries duality all the way through the exposition. Chapter 1 gives a general definition of duality that shows the dual aspects of a matrix as a column of rows and a row of columns. The proof of weak duality in Chapter 2 is shown via the Lagrangian, which relies on matrix duality. The first three LP formulation examples in Chapter 3 are classic primal-dual pairs including the diet problem and 2-person zero sum games. For many engineering students, optimization is their first immersion in rigorous mathematics. Conventional texts assume a level of mathematical sophistication they don’t have. This text embeds dozens of reading tips and hundreds of answered questions to guide such students. Features Emphasis on duality throughout Practical tips for modeling and computation Coverage of computational complexity and data structures Exercises and problems based on the learning theory concept of the zone of proximal development Guidance for the mathematically unsophisticated reader About the Author Craig A. Tovey is a professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Institute of Technology. Dr. Tovey received an AB from Harvard College, an MS in computer science and a PhD in operations research from Stanford University. His principal activities are in operations research and its interdisciplinary applications. He received a Presidential Young Investigator Award and the Jacob Wolfowitz Prize for research in heuristics. He was named an Institute Fellow at Georgia Tech, and was recognized by the ACM Special Interest Group on Electronic Commerce with the Test of Time Award. Dr. Tovey received the 2016 Golden Goose Award for his research on bee foraging behavior leading to the development of the Honey Bee Algorithm.