Author: Ram Gupta
Publisher: Elsevier
ISBN: 0323996213
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy, sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components that are used in ceramic coatings. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers. Advanced Ceramic Coatings for Energy Applications covers recent developments in conducting electrodes, photovoltaics, solar cells, battery applications, fuel cells, electrocatalysts, photocatalysts and supercapacitors. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; biomedical applications; and emerging applications. The books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. It will also be of value to early career scientists providing background knowledge to the field. - Includes comprehensive coverage of advanced ceramic coatings for energy applications - Features the latest progress and recent technological developments - Includes comparisons to other coatings types (e.g., polymers, metals, and enamel) to demonstrate potential, limitations, and differences - Contains extensive case studies and worked examples
Advanced Ceramic Coatings for Energy Applications
Author: Ram Gupta
Publisher: Elsevier
ISBN: 0323996213
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy, sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components that are used in ceramic coatings. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers. Advanced Ceramic Coatings for Energy Applications covers recent developments in conducting electrodes, photovoltaics, solar cells, battery applications, fuel cells, electrocatalysts, photocatalysts and supercapacitors. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; biomedical applications; and emerging applications. The books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. It will also be of value to early career scientists providing background knowledge to the field. - Includes comprehensive coverage of advanced ceramic coatings for energy applications - Features the latest progress and recent technological developments - Includes comparisons to other coatings types (e.g., polymers, metals, and enamel) to demonstrate potential, limitations, and differences - Contains extensive case studies and worked examples
Publisher: Elsevier
ISBN: 0323996213
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy, sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components that are used in ceramic coatings. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers. Advanced Ceramic Coatings for Energy Applications covers recent developments in conducting electrodes, photovoltaics, solar cells, battery applications, fuel cells, electrocatalysts, photocatalysts and supercapacitors. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; biomedical applications; and emerging applications. The books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. It will also be of value to early career scientists providing background knowledge to the field. - Includes comprehensive coverage of advanced ceramic coatings for energy applications - Features the latest progress and recent technological developments - Includes comparisons to other coatings types (e.g., polymers, metals, and enamel) to demonstrate potential, limitations, and differences - Contains extensive case studies and worked examples
Inorganic Particle Synthesis via Macro and Microemulsions
Author: Dibyendu Ganguli
Publisher: Springer Science & Business Media
ISBN: 1461500478
Category : Science
Languages : en
Pages : 214
Book Description
"Nanotechnology" is now very well known as one of the most important key technologies in science and industry. In the field of material science and engineering, nanoparticles should be unit materials, as well as atoms and molecules, to build ceramics, devices, catalysts, and machines, and the "nanoparticle technology" is thus attracting. This novel technology includes various methodologies for nanoparticles: preparation, surface-modification via chemical and/or physical treatments, immobilization and arrangement on supports or substrates, to achieve high performance for luminescence properties in light emitting devices, and high efficiency for catalytic and photocatalytic reactions in chemical synthesis, chemical decomposition, and artificial photosynthesis, etc. It should be needless to say that the preparation of nanoparticles, having precisely controlled particle size, size distribution, chemical composition, and surface properties, is essentially important to realize "true nanoparticle technology". This book, written by Dr. Dibyendu Ganguli and Dr. Munia Ganguli, deals with the preparation methodologies for inorganic nanoparticles using macro- and microemulsions as "microreactor". There are several differences between these two emulsions, in addition to water droplet size: thermodynamic stability, and fusion-redispersion dynamics of the droplets. The properties of the nanoparticles prepared in these emulsion systems are seriously influenced and controlled by the selection of dynamic and static conditions.
Publisher: Springer Science & Business Media
ISBN: 1461500478
Category : Science
Languages : en
Pages : 214
Book Description
"Nanotechnology" is now very well known as one of the most important key technologies in science and industry. In the field of material science and engineering, nanoparticles should be unit materials, as well as atoms and molecules, to build ceramics, devices, catalysts, and machines, and the "nanoparticle technology" is thus attracting. This novel technology includes various methodologies for nanoparticles: preparation, surface-modification via chemical and/or physical treatments, immobilization and arrangement on supports or substrates, to achieve high performance for luminescence properties in light emitting devices, and high efficiency for catalytic and photocatalytic reactions in chemical synthesis, chemical decomposition, and artificial photosynthesis, etc. It should be needless to say that the preparation of nanoparticles, having precisely controlled particle size, size distribution, chemical composition, and surface properties, is essentially important to realize "true nanoparticle technology". This book, written by Dr. Dibyendu Ganguli and Dr. Munia Ganguli, deals with the preparation methodologies for inorganic nanoparticles using macro- and microemulsions as "microreactor". There are several differences between these two emulsions, in addition to water droplet size: thermodynamic stability, and fusion-redispersion dynamics of the droplets. The properties of the nanoparticles prepared in these emulsion systems are seriously influenced and controlled by the selection of dynamic and static conditions.
Nanoscale Materials in Chemistry
Author: Kenneth J. Klabunde
Publisher: John Wiley & Sons
ISBN: 0471460788
Category : Science
Languages : en
Pages : 305
Book Description
In recent years, interest in the preparation and characterization of nanostructured materials has grown due to their distinctive properties and potential technological applications. Nanoscale materials represent a new realm of matter and offer widespread possibilities for contributions to science and technology. Nanoscale Materials in Chemistry explores the vast potential of nanomaterials and serves as essential reading for the entire science community. The extensive coverage of Nanoscale Materials in Chemistry presents a thorough introduction to the field of nanostructured materials, including chemical synthesis methods, bonding theories, and applications. Because nanomaterials are finding more applications in the real world, this text contains up-to-date treatment of such topics as: Metals, semiconductor nanocrystals, and ceramics Double layers, optical properties, and the electrochemistry of metal nanoparticles Chemical and catalytic aspects of nanocrystals Specific heats and melting points of nanocrystalline materials Authored by world-renowned experts in the field of nanotechnology, Nanoscale Materials in Chemistry is suitable as a primary text for graduate courses and is a reliable resource for scientists.
Publisher: John Wiley & Sons
ISBN: 0471460788
Category : Science
Languages : en
Pages : 305
Book Description
In recent years, interest in the preparation and characterization of nanostructured materials has grown due to their distinctive properties and potential technological applications. Nanoscale materials represent a new realm of matter and offer widespread possibilities for contributions to science and technology. Nanoscale Materials in Chemistry explores the vast potential of nanomaterials and serves as essential reading for the entire science community. The extensive coverage of Nanoscale Materials in Chemistry presents a thorough introduction to the field of nanostructured materials, including chemical synthesis methods, bonding theories, and applications. Because nanomaterials are finding more applications in the real world, this text contains up-to-date treatment of such topics as: Metals, semiconductor nanocrystals, and ceramics Double layers, optical properties, and the electrochemistry of metal nanoparticles Chemical and catalytic aspects of nanocrystals Specific heats and melting points of nanocrystalline materials Authored by world-renowned experts in the field of nanotechnology, Nanoscale Materials in Chemistry is suitable as a primary text for graduate courses and is a reliable resource for scientists.
Bioceramics: Materials and Applications V
Author: Veeraraghavan Sundar
Publisher: John Wiley & Sons
ISBN: 111840842X
Category : Technology & Engineering
Languages : en
Pages : 144
Book Description
This proceedings includes papers on ceramics and glasses used in biomedical, dental and biological applications, including biomimetics and natural bioceramic materials. Topics include: materials; applications; biomimetic materials and synthesis; structure/properties of natural ceramic-based materials; behavior in biological environments; and synthesis, processing, characterization, and properties.
Publisher: John Wiley & Sons
ISBN: 111840842X
Category : Technology & Engineering
Languages : en
Pages : 144
Book Description
This proceedings includes papers on ceramics and glasses used in biomedical, dental and biological applications, including biomimetics and natural bioceramic materials. Topics include: materials; applications; biomimetic materials and synthesis; structure/properties of natural ceramic-based materials; behavior in biological environments; and synthesis, processing, characterization, and properties.
Nanoferroics
Author: M.D. Glinchuk
Publisher: Springer Science & Business Media
ISBN: 9400759924
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book covers the physical properties of nanosized ferroics, also called nanoferroics. Nanoferroics are an important class of ceramic materials that substitute conventional ceramic ferroics in modern electronic devices. They include ferroelectric, ferroelastic, magnetic and multiferroic nanostructured materials. The phase transitions and properties of these nanostructured ferroics are strongly affected by the geometric confinement originating from surfaces and interfaces. As a consequence, these materials exhibit a behavior different from the corresponding bulk crystalline, ceramic and powder ferroics. This monograph offers comprehensive coverage of size- and shape-dependent effects at the nanoscale; the specific properties that these materials have been shown to exhibit; the theoretical approaches that have been successful in describing the size-dependent effects observed experimentally; and the technological aspects of many chemical and physico-chemical nanofabrication methods relevant to making nanoferroic materials and composites. The book will be of interest to an audience of condensed matter physicists, material scientists and engineers, working on ferroic nanostructured materials, their fundamentals, fabrication and device applications.
Publisher: Springer Science & Business Media
ISBN: 9400759924
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book covers the physical properties of nanosized ferroics, also called nanoferroics. Nanoferroics are an important class of ceramic materials that substitute conventional ceramic ferroics in modern electronic devices. They include ferroelectric, ferroelastic, magnetic and multiferroic nanostructured materials. The phase transitions and properties of these nanostructured ferroics are strongly affected by the geometric confinement originating from surfaces and interfaces. As a consequence, these materials exhibit a behavior different from the corresponding bulk crystalline, ceramic and powder ferroics. This monograph offers comprehensive coverage of size- and shape-dependent effects at the nanoscale; the specific properties that these materials have been shown to exhibit; the theoretical approaches that have been successful in describing the size-dependent effects observed experimentally; and the technological aspects of many chemical and physico-chemical nanofabrication methods relevant to making nanoferroic materials and composites. The book will be of interest to an audience of condensed matter physicists, material scientists and engineers, working on ferroic nanostructured materials, their fundamentals, fabrication and device applications.
Nanomaterials and Their Biomedical Applications
Author: Tuhin Subhra Santra
Publisher: Springer Nature
ISBN: 9813362529
Category : Science
Languages : en
Pages : 552
Book Description
This book highlights the evolution of, and novel challenges currently facing, nanomaterials science, nanoengineering, and nanotechnology, and their applications and development in the biological and biomedical fields. It details different nanoscale and nanostructured materials syntheses, processing, characterization, and applications, and considers improvements that can be made in nanostructured materials with their different biomedical applications. The book also briefly covers the state of the art of different nanomaterials design, synthesis, fabrication and their potential biomedical applications. It will be particularly useful for reading and research purposes, especially for science and engineering students, academics, and industrial researchers.
Publisher: Springer Nature
ISBN: 9813362529
Category : Science
Languages : en
Pages : 552
Book Description
This book highlights the evolution of, and novel challenges currently facing, nanomaterials science, nanoengineering, and nanotechnology, and their applications and development in the biological and biomedical fields. It details different nanoscale and nanostructured materials syntheses, processing, characterization, and applications, and considers improvements that can be made in nanostructured materials with their different biomedical applications. The book also briefly covers the state of the art of different nanomaterials design, synthesis, fabrication and their potential biomedical applications. It will be particularly useful for reading and research purposes, especially for science and engineering students, academics, and industrial researchers.
Dekker Encyclopedia of Nanoscience and Nanotechnology
Author: James A. Schwarz
Publisher: CRC Press
ISBN: 9780824750497
Category : Science
Languages : en
Pages : 974
Book Description
Publisher: CRC Press
ISBN: 9780824750497
Category : Science
Languages : en
Pages : 974
Book Description
Concise Encyclopedia of Composite Materials
Author: Andreas Mortensen
Publisher: Elsevier
ISBN: 0080524621
Category : Technology & Engineering
Languages : en
Pages : 989
Book Description
Concise Encyclopedia of Composite Materials draws its material from the award-winning Encyclopedia of Materials: Science and Technology, and includes updates and revisions not available in the original set. This customized collection of articles provides a handy reference for materials scientists and engineers with an interest in composite materials made from polymers, metals, ceramics, carbon, biocomposites, nanocomposites, wood, cement, fibers, etc. - Brings together articles from the Encyclopedia of Materials: Science & Technology that focus on the essentials of composite materials, including recent updates - Every article has been commissioned and written by an internationally recognized expert and provides a concise overview of a particular aspect of the field - Enables rapid reference; extensive bibliographies, cross-referencing and indexes guide the user to the most relevant reading in the primary literature - Covers areas of active research, such as biomaterials and porous materials
Publisher: Elsevier
ISBN: 0080524621
Category : Technology & Engineering
Languages : en
Pages : 989
Book Description
Concise Encyclopedia of Composite Materials draws its material from the award-winning Encyclopedia of Materials: Science and Technology, and includes updates and revisions not available in the original set. This customized collection of articles provides a handy reference for materials scientists and engineers with an interest in composite materials made from polymers, metals, ceramics, carbon, biocomposites, nanocomposites, wood, cement, fibers, etc. - Brings together articles from the Encyclopedia of Materials: Science & Technology that focus on the essentials of composite materials, including recent updates - Every article has been commissioned and written by an internationally recognized expert and provides a concise overview of a particular aspect of the field - Enables rapid reference; extensive bibliographies, cross-referencing and indexes guide the user to the most relevant reading in the primary literature - Covers areas of active research, such as biomaterials and porous materials
Nanoferrites for Emerging Environmental Applications
Author: Atul Thakur
Publisher: Elsevier
ISBN: 0443222312
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
Nanoferrites for Emerging Environmental Applications discusses the synthesis and structure of nanoferrites, as well as their electrical, optical, and magnetic properties. This book also provides a detailed discussion of the use of nanoferrites for various environmental applications, such as for water and air pollution detection and remediation. This book covers almost every aspect of nanoferrites for environmental applications and will be of great use to researchers working in multidisciplinary areas. Nanoferrites' superior electronic, optical, and magnetic properties make them promising agents in a wide spectrum of applications. After looking at the fundamentals of nanoferrites, this book proceeds to analyze their application in a comprehensive range of environmental applications. Topics covered include wastewater treatment, the removal of heavy metal ions, remediation of organic and inorganic pollutants, and their use in the detection and remediation of both air and solid pollution. Future opportunities for research are also addressed. - Focuses on nanoferrite applications for air and water pollution detection, and remediation through purification - Includes detailed synthesis procedures and advanced characterization methods for nanoferrites - Explores ways that nanoferrites can be used in various environmental applications and then be recovered after use
Publisher: Elsevier
ISBN: 0443222312
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
Nanoferrites for Emerging Environmental Applications discusses the synthesis and structure of nanoferrites, as well as their electrical, optical, and magnetic properties. This book also provides a detailed discussion of the use of nanoferrites for various environmental applications, such as for water and air pollution detection and remediation. This book covers almost every aspect of nanoferrites for environmental applications and will be of great use to researchers working in multidisciplinary areas. Nanoferrites' superior electronic, optical, and magnetic properties make them promising agents in a wide spectrum of applications. After looking at the fundamentals of nanoferrites, this book proceeds to analyze their application in a comprehensive range of environmental applications. Topics covered include wastewater treatment, the removal of heavy metal ions, remediation of organic and inorganic pollutants, and their use in the detection and remediation of both air and solid pollution. Future opportunities for research are also addressed. - Focuses on nanoferrite applications for air and water pollution detection, and remediation through purification - Includes detailed synthesis procedures and advanced characterization methods for nanoferrites - Explores ways that nanoferrites can be used in various environmental applications and then be recovered after use
Comprehensive Nanoscience and Technology
Author:
Publisher: Academic Press
ISBN: 0123743966
Category : Science
Languages : en
Pages : 2785
Book Description
From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.
Publisher: Academic Press
ISBN: 0123743966
Category : Science
Languages : en
Pages : 2785
Book Description
From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.