Author: C. Ashton Drew
Publisher: Springer Science & Business Media
ISBN: 1441973907
Category : Science
Languages : en
Pages : 319
Book Description
Most projects in Landscape Ecology, at some point, define a species-habitat association. These models are inherently spatial, dealing with landscapes and their configurations. Whether coding behavioral rules for dispersal of simulated organisms through simulated landscapes, or designing the sampling extent of field surveys and experiments in real landscapes, landscape ecologists must make assumptions about how organisms experience and utilize the landscape. These convenient working postulates allow modelers to project the model in time and space, yet rarely are they explicitly considered. The early years of landscape ecology necessarily focused on the evolution of effective data sources, metrics, and statistical approaches that could truly capture the spatial and temporal patterns and processes of interest. Now that these tools are well established, we reflect on the ecological theories that underpin the assumptions commonly made during species distribution modeling and mapping. This is crucial for applying models to questions of global sustainability. Due to the inherent use of GIS for much of this kind of research, and as several authors’ research involves the production of multicolored map figures, there would be an 8-page color insert. Additional color figures could be made available through a digital archive, or by cost contributions of the chapter authors. Where applicable, would be relevant chapters’ GIS data and model code available through a digital archive. The practice of data and code sharing is becoming standard in GIS studies, is an inherent method of this book, and will serve to add additional research value to the book for both academic and practitioner audiences.
Predictive Species and Habitat Modeling in Landscape Ecology
Author: C. Ashton Drew
Publisher: Springer Science & Business Media
ISBN: 1441973907
Category : Science
Languages : en
Pages : 319
Book Description
Most projects in Landscape Ecology, at some point, define a species-habitat association. These models are inherently spatial, dealing with landscapes and their configurations. Whether coding behavioral rules for dispersal of simulated organisms through simulated landscapes, or designing the sampling extent of field surveys and experiments in real landscapes, landscape ecologists must make assumptions about how organisms experience and utilize the landscape. These convenient working postulates allow modelers to project the model in time and space, yet rarely are they explicitly considered. The early years of landscape ecology necessarily focused on the evolution of effective data sources, metrics, and statistical approaches that could truly capture the spatial and temporal patterns and processes of interest. Now that these tools are well established, we reflect on the ecological theories that underpin the assumptions commonly made during species distribution modeling and mapping. This is crucial for applying models to questions of global sustainability. Due to the inherent use of GIS for much of this kind of research, and as several authors’ research involves the production of multicolored map figures, there would be an 8-page color insert. Additional color figures could be made available through a digital archive, or by cost contributions of the chapter authors. Where applicable, would be relevant chapters’ GIS data and model code available through a digital archive. The practice of data and code sharing is becoming standard in GIS studies, is an inherent method of this book, and will serve to add additional research value to the book for both academic and practitioner audiences.
Publisher: Springer Science & Business Media
ISBN: 1441973907
Category : Science
Languages : en
Pages : 319
Book Description
Most projects in Landscape Ecology, at some point, define a species-habitat association. These models are inherently spatial, dealing with landscapes and their configurations. Whether coding behavioral rules for dispersal of simulated organisms through simulated landscapes, or designing the sampling extent of field surveys and experiments in real landscapes, landscape ecologists must make assumptions about how organisms experience and utilize the landscape. These convenient working postulates allow modelers to project the model in time and space, yet rarely are they explicitly considered. The early years of landscape ecology necessarily focused on the evolution of effective data sources, metrics, and statistical approaches that could truly capture the spatial and temporal patterns and processes of interest. Now that these tools are well established, we reflect on the ecological theories that underpin the assumptions commonly made during species distribution modeling and mapping. This is crucial for applying models to questions of global sustainability. Due to the inherent use of GIS for much of this kind of research, and as several authors’ research involves the production of multicolored map figures, there would be an 8-page color insert. Additional color figures could be made available through a digital archive, or by cost contributions of the chapter authors. Where applicable, would be relevant chapters’ GIS data and model code available through a digital archive. The practice of data and code sharing is becoming standard in GIS studies, is an inherent method of this book, and will serve to add additional research value to the book for both academic and practitioner audiences.
Predictive Species and Habitat Modeling in Landscape Ecology
Author: C. Ashton Drew
Publisher: Springer
ISBN: 9781441973917
Category : Science
Languages : en
Pages : 313
Book Description
Most projects in Landscape Ecology, at some point, define a species-habitat association. These models are inherently spatial, dealing with landscapes and their configurations. Whether coding behavioral rules for dispersal of simulated organisms through simulated landscapes, or designing the sampling extent of field surveys and experiments in real landscapes, landscape ecologists must make assumptions about how organisms experience and utilize the landscape. These convenient working postulates allow modelers to project the model in time and space, yet rarely are they explicitly considered. The early years of landscape ecology necessarily focused on the evolution of effective data sources, metrics, and statistical approaches that could truly capture the spatial and temporal patterns and processes of interest. Now that these tools are well established, we reflect on the ecological theories that underpin the assumptions commonly made during species distribution modeling and mapping. This is crucial for applying models to questions of global sustainability. Due to the inherent use of GIS for much of this kind of research, and as several authors’ research involves the production of multicolored map figures, there would be an 8-page color insert. Additional color figures could be made available through a digital archive, or by cost contributions of the chapter authors. Where applicable, would be relevant chapters’ GIS data and model code available through a digital archive. The practice of data and code sharing is becoming standard in GIS studies, is an inherent method of this book, and will serve to add additional research value to the book for both academic and practitioner audiences.
Publisher: Springer
ISBN: 9781441973917
Category : Science
Languages : en
Pages : 313
Book Description
Most projects in Landscape Ecology, at some point, define a species-habitat association. These models are inherently spatial, dealing with landscapes and their configurations. Whether coding behavioral rules for dispersal of simulated organisms through simulated landscapes, or designing the sampling extent of field surveys and experiments in real landscapes, landscape ecologists must make assumptions about how organisms experience and utilize the landscape. These convenient working postulates allow modelers to project the model in time and space, yet rarely are they explicitly considered. The early years of landscape ecology necessarily focused on the evolution of effective data sources, metrics, and statistical approaches that could truly capture the spatial and temporal patterns and processes of interest. Now that these tools are well established, we reflect on the ecological theories that underpin the assumptions commonly made during species distribution modeling and mapping. This is crucial for applying models to questions of global sustainability. Due to the inherent use of GIS for much of this kind of research, and as several authors’ research involves the production of multicolored map figures, there would be an 8-page color insert. Additional color figures could be made available through a digital archive, or by cost contributions of the chapter authors. Where applicable, would be relevant chapters’ GIS data and model code available through a digital archive. The practice of data and code sharing is becoming standard in GIS studies, is an inherent method of this book, and will serve to add additional research value to the book for both academic and practitioner audiences.
Habitat Suitability and Distribution Models
Author: Antoine Guisan
Publisher: Cambridge University Press
ISBN: 0521765137
Category : Computers
Languages : en
Pages : 513
Book Description
This book introduces the key stages of niche-based habitat suitability model building, evaluation and prediction required for understanding and predicting future patterns of species and biodiversity. Beginning with the main theory behind ecological niches and species distributions, the book proceeds through all major steps of model building, from conceptualization and model training to model evaluation and spatio-temporal predictions. Extensive examples using R support graduate students and researchers in quantifying ecological niches and predicting species distributions with their own data, and help to address key environmental and conservation problems. Reflecting this highly active field of research, the book incorporates the latest developments from informatics and statistics, as well as using data from remote sources such as satellite imagery. A website at www.unil.ch/hsdm contains the codes and supporting material required to run the examples and teach courses.
Publisher: Cambridge University Press
ISBN: 0521765137
Category : Computers
Languages : en
Pages : 513
Book Description
This book introduces the key stages of niche-based habitat suitability model building, evaluation and prediction required for understanding and predicting future patterns of species and biodiversity. Beginning with the main theory behind ecological niches and species distributions, the book proceeds through all major steps of model building, from conceptualization and model training to model evaluation and spatio-temporal predictions. Extensive examples using R support graduate students and researchers in quantifying ecological niches and predicting species distributions with their own data, and help to address key environmental and conservation problems. Reflecting this highly active field of research, the book incorporates the latest developments from informatics and statistics, as well as using data from remote sources such as satellite imagery. A website at www.unil.ch/hsdm contains the codes and supporting material required to run the examples and teach courses.
Mapping Species Distributions
Author: Janet Franklin
Publisher: Cambridge University Press
ISBN: 1139485296
Category : Nature
Languages : en
Pages : 538
Book Description
Maps of species' distributions or habitat suitability are required for many aspects of environmental research, resource management and conservation planning. These include biodiversity assessment, reserve design, habitat management and restoration, species and habitat conservation plans and predicting the effects of environmental change on species and ecosystems. The proliferation of methods and uncertainty regarding their effectiveness can be daunting to researchers, resource managers and conservation planners alike. Franklin summarises the methods used in species distribution modeling (also called niche modeling) and presents a framework for spatial prediction of species distributions based on the attributes (space, time, scale) of the data and questions being asked. The framework links theoretical ecological models of species distributions to spatial data on species and environment, and statistical models used for spatial prediction. Providing practical guidelines to students, researchers and practitioners in a broad range of environmental sciences including ecology, geography, conservation biology, and natural resources management.
Publisher: Cambridge University Press
ISBN: 1139485296
Category : Nature
Languages : en
Pages : 538
Book Description
Maps of species' distributions or habitat suitability are required for many aspects of environmental research, resource management and conservation planning. These include biodiversity assessment, reserve design, habitat management and restoration, species and habitat conservation plans and predicting the effects of environmental change on species and ecosystems. The proliferation of methods and uncertainty regarding their effectiveness can be daunting to researchers, resource managers and conservation planners alike. Franklin summarises the methods used in species distribution modeling (also called niche modeling) and presents a framework for spatial prediction of species distributions based on the attributes (space, time, scale) of the data and questions being asked. The framework links theoretical ecological models of species distributions to spatial data on species and environment, and statistical models used for spatial prediction. Providing practical guidelines to students, researchers and practitioners in a broad range of environmental sciences including ecology, geography, conservation biology, and natural resources management.
Joint Species Distribution Modelling
Author: Otso Ovaskainen
Publisher: Cambridge University Press
ISBN: 1108492460
Category : Nature
Languages : en
Pages : 389
Book Description
A comprehensive account of joint species distribution modelling, covering statistical analyses in light of modern community ecology theory.
Publisher: Cambridge University Press
ISBN: 1108492460
Category : Nature
Languages : en
Pages : 389
Book Description
A comprehensive account of joint species distribution modelling, covering statistical analyses in light of modern community ecology theory.
Ecological Forecasting
Author: Michael C. Dietze
Publisher: Princeton University Press
ISBN: 0691160570
Category : Science
Languages : en
Pages : 284
Book Description
An authoritative and accessible introduction to the concepts and tools needed to make ecology a more predictive science Ecologists are being asked to respond to unprecedented environmental challenges. How can they provide the best available scientific information about what will happen in the future? Ecological Forecasting is the first book to bring together the concepts and tools needed to make ecology a more predictive science. Ecological Forecasting presents a new way of doing ecology. A closer connection between data and models can help us to project our current understanding of ecological processes into new places and times. This accessible and comprehensive book covers a wealth of topics, including Bayesian calibration and the complexities of real-world data; uncertainty quantification, partitioning, propagation, and analysis; feedbacks from models to measurements; state-space models and data fusion; iterative forecasting and the forecast cycle; and decision support. Features case studies that highlight the advances and opportunities in forecasting across a range of ecological subdisciplines, such as epidemiology, fisheries, endangered species, biodiversity, and the carbon cycle Presents a probabilistic approach to prediction and iteratively updating forecasts based on new data Describes statistical and informatics tools for bringing models and data together, with emphasis on: Quantifying and partitioning uncertainties Dealing with the complexities of real-world data Feedbacks to identifying data needs, improving models, and decision support Numerous hands-on activities in R available online
Publisher: Princeton University Press
ISBN: 0691160570
Category : Science
Languages : en
Pages : 284
Book Description
An authoritative and accessible introduction to the concepts and tools needed to make ecology a more predictive science Ecologists are being asked to respond to unprecedented environmental challenges. How can they provide the best available scientific information about what will happen in the future? Ecological Forecasting is the first book to bring together the concepts and tools needed to make ecology a more predictive science. Ecological Forecasting presents a new way of doing ecology. A closer connection between data and models can help us to project our current understanding of ecological processes into new places and times. This accessible and comprehensive book covers a wealth of topics, including Bayesian calibration and the complexities of real-world data; uncertainty quantification, partitioning, propagation, and analysis; feedbacks from models to measurements; state-space models and data fusion; iterative forecasting and the forecast cycle; and decision support. Features case studies that highlight the advances and opportunities in forecasting across a range of ecological subdisciplines, such as epidemiology, fisheries, endangered species, biodiversity, and the carbon cycle Presents a probabilistic approach to prediction and iteratively updating forecasts based on new data Describes statistical and informatics tools for bringing models and data together, with emphasis on: Quantifying and partitioning uncertainties Dealing with the complexities of real-world data Feedbacks to identifying data needs, improving models, and decision support Numerous hands-on activities in R available online
Spatial Complexity, Informatics, and Wildlife Conservation
Author: Samuel A. Cushman
Publisher: Springer Science & Business Media
ISBN: 4431877711
Category : Science
Languages : en
Pages : 449
Book Description
As Earth faces the greatest mass extinction in 65 million years, the present is a moment of tremendous foment and emergence in ecological science. With leaps in advances in ecological research and the technical tools available, scientists face the critical task of challenging policymakers and the public to recognize the urgency of our global crisis. This book focuses directly on the interplay between theory, data, and analytical methodology in the rapidly evolving fields of animal ecology, conservation, and management. The mixture of topics of particular current relevance includes landscape ecology, remote sensing, spatial modeling, geostatistics, genomics, and ecological informatics. The greatest interest to the practicing scientist and graduate student will be the synthesis and integration of these topics to provide a composite view of the emerging field of spatial ecological informatics and its applications in research and management.
Publisher: Springer Science & Business Media
ISBN: 4431877711
Category : Science
Languages : en
Pages : 449
Book Description
As Earth faces the greatest mass extinction in 65 million years, the present is a moment of tremendous foment and emergence in ecological science. With leaps in advances in ecological research and the technical tools available, scientists face the critical task of challenging policymakers and the public to recognize the urgency of our global crisis. This book focuses directly on the interplay between theory, data, and analytical methodology in the rapidly evolving fields of animal ecology, conservation, and management. The mixture of topics of particular current relevance includes landscape ecology, remote sensing, spatial modeling, geostatistics, genomics, and ecological informatics. The greatest interest to the practicing scientist and graduate student will be the synthesis and integration of these topics to provide a composite view of the emerging field of spatial ecological informatics and its applications in research and management.
Invasive Species
Author: Andrew P. Robinson
Publisher: Cambridge University Press
ISBN: 052176596X
Category : Mathematics
Languages : en
Pages : 427
Book Description
This book reviews the latest risk-based techniques to protect national interests from invasive pests and pathogens before, at and within national borders.
Publisher: Cambridge University Press
ISBN: 052176596X
Category : Mathematics
Languages : en
Pages : 427
Book Description
This book reviews the latest risk-based techniques to protect national interests from invasive pests and pathogens before, at and within national borders.
Expert Knowledge and Its Application in Landscape Ecology
Author: Ajith H. Perera
Publisher: Springer Science & Business Media
ISBN: 1461410347
Category : Science
Languages : en
Pages : 313
Book Description
Typically, landscape ecologists use empirical observations to conduct research and devise solutions for applied problems in conservation and management. In some instances, they rely on advice and input of experienced professionals in both developing and applying knowledge. Given the wealth of expert knowledge and the risks of its informal and implicit applications in landscape ecology, it is necessary to formally recognize and characterize expert knowledge and bring rigor to methods for its applications. In this context, the broad goal of this book is to introduce the concept of expert knowledge and examine its role in landscape ecological applications. We plan to do so in three steps: First we introduce the topic to landscape ecologists, explore salient characteristics of experts and expert knowledge, and describe methods used in capturing and formalizing that knowledge. Second, we present examples of research in landscape ecology from a variety of ecosystems and geographic locations that formally incorporate expert knowledge. These case studies address a range of topics that will interest landscape ecologists and other resource management and conservation professionals including the specific roles of expert knowledge in developing, testing, parameterizing, and applying models; estimating the uncertainty in expert knowledge; developing methods of formalizing and incorporating expert knowledge; and using expert knowledge as competing models and a source of alternate hypotheses. Third, we synthesize the state of knowledge on this topic and critically examine the advantages and disadvantages of incorporating expert knowledge in landscape ecological applications. The disciplinary subject areas we address are broad and cover much of the scope of contemporary landscape ecology, including broad-scale forest management and conservation, quantifying forest disturbances and succession, conservation of habitats for a range of avian and mammal species, vulnerability and conservation of marine ecosystems, and the spread and impacts of invasive plants. This text incorporates the collective experience and knowledge of over 35 researchers in landscape ecology representing a diverse range of disciplinary subject areas and geographic locations. Through this text, we will catalyze further thought and investigations on expert knowledge among the target readership of researchers, practitioners, and graduate students in landscape ecology.
Publisher: Springer Science & Business Media
ISBN: 1461410347
Category : Science
Languages : en
Pages : 313
Book Description
Typically, landscape ecologists use empirical observations to conduct research and devise solutions for applied problems in conservation and management. In some instances, they rely on advice and input of experienced professionals in both developing and applying knowledge. Given the wealth of expert knowledge and the risks of its informal and implicit applications in landscape ecology, it is necessary to formally recognize and characterize expert knowledge and bring rigor to methods for its applications. In this context, the broad goal of this book is to introduce the concept of expert knowledge and examine its role in landscape ecological applications. We plan to do so in three steps: First we introduce the topic to landscape ecologists, explore salient characteristics of experts and expert knowledge, and describe methods used in capturing and formalizing that knowledge. Second, we present examples of research in landscape ecology from a variety of ecosystems and geographic locations that formally incorporate expert knowledge. These case studies address a range of topics that will interest landscape ecologists and other resource management and conservation professionals including the specific roles of expert knowledge in developing, testing, parameterizing, and applying models; estimating the uncertainty in expert knowledge; developing methods of formalizing and incorporating expert knowledge; and using expert knowledge as competing models and a source of alternate hypotheses. Third, we synthesize the state of knowledge on this topic and critically examine the advantages and disadvantages of incorporating expert knowledge in landscape ecological applications. The disciplinary subject areas we address are broad and cover much of the scope of contemporary landscape ecology, including broad-scale forest management and conservation, quantifying forest disturbances and succession, conservation of habitats for a range of avian and mammal species, vulnerability and conservation of marine ecosystems, and the spread and impacts of invasive plants. This text incorporates the collective experience and knowledge of over 35 researchers in landscape ecology representing a diverse range of disciplinary subject areas and geographic locations. Through this text, we will catalyze further thought and investigations on expert knowledge among the target readership of researchers, practitioners, and graduate students in landscape ecology.
Landscape Genetics
Author: Niko Balkenhol
Publisher: John Wiley & Sons
ISBN: 1118525280
Category : Science
Languages : en
Pages : 294
Book Description
LANDSCAPE GENETICS: CONCEPTS, METHODS, APPLICATIONS LANDSCAPE GENETICS: CONCEPTS, METHODS, APPLICATIONS Edited by Niko Balkenhol, Samuel A. Cushman, Andrew T. Storfer, Lisette P. Waits Landscape genetics is an exciting and rapidly growing field, melding methods and theory from landscape ecology and population genetics to address some of the most challenging and urgent ecological and evolutionary topics of our time. Landscape genetic approaches now enable researchers to study in detail how environmental complexity in space and time affect gene flow, genetic drift, and local adaptation. However, learning about the concepts and methods underlying the field remains challenging due to the highly interdisciplinary nature of the field, which relies on topics that have traditionally been treated separately in classes and textbooks. In this edited volume, some of the leading experts in landscape genetics provide the first comprehensive introduction to underlying concepts, commonly used methods, and current and future applications of landscape genetics. Consistent with the interdisciplinary nature of the field, the book includes textbook-like chapters that synthesize fundamental concepts and methods underlying landscape genetics (Part 1), chapters on advanced topics that deserve a more in-depth treatment (Part 2), and chapters illustrating the use of concepts and methods in empirical applications (Part 3). Aimed at beginning landscape geneticists and experienced researchers alike, this book will be helpful for all scientists and practitioners interested in learning, teaching, and applying landscape genetics.
Publisher: John Wiley & Sons
ISBN: 1118525280
Category : Science
Languages : en
Pages : 294
Book Description
LANDSCAPE GENETICS: CONCEPTS, METHODS, APPLICATIONS LANDSCAPE GENETICS: CONCEPTS, METHODS, APPLICATIONS Edited by Niko Balkenhol, Samuel A. Cushman, Andrew T. Storfer, Lisette P. Waits Landscape genetics is an exciting and rapidly growing field, melding methods and theory from landscape ecology and population genetics to address some of the most challenging and urgent ecological and evolutionary topics of our time. Landscape genetic approaches now enable researchers to study in detail how environmental complexity in space and time affect gene flow, genetic drift, and local adaptation. However, learning about the concepts and methods underlying the field remains challenging due to the highly interdisciplinary nature of the field, which relies on topics that have traditionally been treated separately in classes and textbooks. In this edited volume, some of the leading experts in landscape genetics provide the first comprehensive introduction to underlying concepts, commonly used methods, and current and future applications of landscape genetics. Consistent with the interdisciplinary nature of the field, the book includes textbook-like chapters that synthesize fundamental concepts and methods underlying landscape genetics (Part 1), chapters on advanced topics that deserve a more in-depth treatment (Part 2), and chapters illustrating the use of concepts and methods in empirical applications (Part 3). Aimed at beginning landscape geneticists and experienced researchers alike, this book will be helpful for all scientists and practitioners interested in learning, teaching, and applying landscape genetics.