Author: Gabriele Ciaramella
Publisher: SIAM
ISBN: 1611976901
Category : Mathematics
Languages : en
Pages : 285
Book Description
Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.
Iterative Methods and Preconditioners for Systems of Linear Equations
A Survey of Preconditioned Iterative Methods
Author: Are Magnus Bruaset
Publisher: Routledge
ISBN: 1351469363
Category : Mathematics
Languages : en
Pages : 180
Book Description
The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are w
Publisher: Routledge
ISBN: 1351469363
Category : Mathematics
Languages : en
Pages : 180
Book Description
The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are w
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs
Author: Josef Malek
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Iterative Methods for Linear Systems
Author: Maxim A. Olshanskii
Publisher: SIAM
ISBN: 1611973465
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Publisher: SIAM
ISBN: 1611973465
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications
Author: Daniele Bertaccini
Publisher: CRC Press
ISBN: 1351649612
Category : Mathematics
Languages : en
Pages : 321
Book Description
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.
Publisher: CRC Press
ISBN: 1351649612
Category : Mathematics
Languages : en
Pages : 321
Book Description
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.
An Introduction to Iterative Toeplitz Solvers
Author: Raymond Hon-Fu Chan
Publisher: SIAM
ISBN: 9780898718850
Category : Mathematics
Languages : en
Pages : 123
Book Description
Toeplitz systems arise in a variety of applications in mathematics, scientific computing, and engineering, including numerical partial and ordinary differential equations, numerical solutions of convolution-type integral equations, stationary autoregressive time series in statistics, minimal realization problems in control theory, system identification problems in signal processing, and image restoration problems in image processing.
Publisher: SIAM
ISBN: 9780898718850
Category : Mathematics
Languages : en
Pages : 123
Book Description
Toeplitz systems arise in a variety of applications in mathematics, scientific computing, and engineering, including numerical partial and ordinary differential equations, numerical solutions of convolution-type integral equations, stationary autoregressive time series in statistics, minimal realization problems in control theory, system identification problems in signal processing, and image restoration problems in image processing.
Iterative Methods for Toeplitz Systems
Author: Michael K. Ng
Publisher: Numerical Mathematics and Scie
ISBN: 9780198504207
Category : Computers
Languages : en
Pages : 370
Book Description
Toeplitz and Toeplitz-related systems arise in a variety of applications in mathematics and engineering, especially in signal and image processing.
Publisher: Numerical Mathematics and Scie
ISBN: 9780198504207
Category : Computers
Languages : en
Pages : 370
Book Description
Toeplitz and Toeplitz-related systems arise in a variety of applications in mathematics and engineering, especially in signal and image processing.
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Finite Elements and Fast Iterative Solvers
Author: Howard Elman
Publisher: OUP Oxford
ISBN: 0191667927
Category : Mathematics
Languages : en
Pages : 495
Book Description
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.
Publisher: OUP Oxford
ISBN: 0191667927
Category : Mathematics
Languages : en
Pages : 495
Book Description
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.