Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media PDF full book. Access full book title Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media by . Download full books in PDF and EPUB format.

Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media

Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A Multiple Interacting Continua method (MINC) is presented which is applicable for numerical simulation of heat and multi-phase fluid flow in multidimensional, fractured porous media. This method is a generalization of the double-porosity concept. The partitioning of the flow domain into computational volume elements is based on the criterion of approximate thermodynamic equilibrium at all times within each element. The thermodynamic conditions in the rock matrix are assumed to be primarily controlled by the distance from the fractures, which leads to the use of nested grid blocks. The MINC concept is implemented through the Integral Finite Difference (IFD) method. No analytical approximations are made for the coupling between the fracture and matrix continua. Instead, the transient flow of fluid and heat between matrix and fractures is treated by a numerical method. The geometric parameters needed in a simulation are preprocessed from a specification of fracture spacings and apertures, and the geometry of the matrix blocks. The MINC method is verified by comparison with the analytical solution of Warren and Root. Illustrative applications are given for several geothermal reservoir engineering problems.

Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media

Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A Multiple Interacting Continua method (MINC) is presented which is applicable for numerical simulation of heat and multi-phase fluid flow in multidimensional, fractured porous media. This method is a generalization of the double-porosity concept. The partitioning of the flow domain into computational volume elements is based on the criterion of approximate thermodynamic equilibrium at all times within each element. The thermodynamic conditions in the rock matrix are assumed to be primarily controlled by the distance from the fractures, which leads to the use of nested grid blocks. The MINC concept is implemented through the Integral Finite Difference (IFD) method. No analytical approximations are made for the coupling between the fracture and matrix continua. Instead, the transient flow of fluid and heat between matrix and fractures is treated by a numerical method. The geometric parameters needed in a simulation are preprocessed from a specification of fracture spacings and apertures, and the geometry of the matrix blocks. The MINC method is verified by comparison with the analytical solution of Warren and Root. Illustrative applications are given for several geothermal reservoir engineering problems.

A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media

A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media PDF Author: K. Pruess
Publisher:
ISBN:
Category : Fluid mechanics
Languages : en
Pages : 38

Book Description


Multiphase Fluid Flow in Porous and Fractured Reservoirs

Multiphase Fluid Flow in Porous and Fractured Reservoirs PDF Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128039116
Category : Science
Languages : en
Pages : 420

Book Description
Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today’s reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs Explains analytical solutions and approaches as well as applications to modeling verification for today’s reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency Utilize practical codes and programs featured from online companion website

Flow and Transport in Fractured Porous Media

Flow and Transport in Fractured Porous Media PDF Author: Peter Dietrich
Publisher: Springer Science & Business Media
ISBN: 9783540232704
Category : Mathematics
Languages : en
Pages : 476

Book Description
This book addresses the characterization of flow and transport in porous fractured media from experimental and modeling perspectives. The volume explores porous media problems, from the origin of the present natural porous structures, to their characterization, and various flow and transport phenomena that exist within the porous media. Examples are miscible displacements in porous media and fractured rock and the physical and chemical interactions within porous fractured aquifers. The book is a comprehensive presentation of investigations performed and analysed on different scales, supporting the understanding and application of experimental studies and numerical simulations.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 354

Book Description


Fluid Dynamics in Complex Fractured-Porous Systems

Fluid Dynamics in Complex Fractured-Porous Systems PDF Author: Boris Faybishenko
Publisher: John Wiley & Sons
ISBN: 1118877284
Category : Science
Languages : en
Pages : 265

Book Description
Despite of many years of studies, predicting fluid flow, heat, and chemical transport in fractured-porous media remains a challenge for scientists and engineers worldwide. This monograph is the third in a series on the dynamics of fluids and transport in fractured rock published by the American Geophysical Union (Geophysical Monograph Series, Vol. 162, 2005; and Geophysical Monograph, No. 122, 2000). This monograph is dedicated to the late Dr. Paul Witherspoon for his seminal influence on the development of ideas and methodologies and the birth of contemporary fractured rock hydrogeology, including such fundamental and applied problems as environmental remediation; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. This monograph addresses fundamental and applied scientific questions and is intended to assist scientists and practitioners bridge gaps in the current scientific knowledge in the areas of theoretical fluids dynamics, field measurements, and experiments for different practical applications. Readers of this book will include researchers, engineers, and professionals within academia, Federal agencies, and industry, as well as graduate/undergraduate students involved in theoretical, experimental, and numerical modeling studies of fluid dynamics and reactive chemical transport in the unsaturated and saturated zones, including studies pertaining to petroleum and geothermal reservoirs, environmental management and remediation, mining, gas storage, and radioactive waste isolation in underground repositories. Volume highlights include discussions of the following: Fundamentals of using a complex systems approach to describe flow and transport in fractured-porous media. Methods of Field Measurements and Experiments Collective behavior and emergent properties of complex fractured rock systems Connection to the surrounding environment Multi-disciplinary research for different applications

Geoenergy Modeling I

Geoenergy Modeling I PDF Author: Norbert Böttcher
Publisher: Springer
ISBN: 3319313355
Category : Technology & Engineering
Languages : en
Pages : 117

Book Description
This introduction to geothermal modeling deals with flow and heat transport processes in porous and fractured media related to geothermal energy applications. Following background coverage of geothermal resources and utilization in several countries, the basics of continuum mechanics for heat transport processes, as well as numerical methods for solving underlying governing equations are discussed. This examination forms the theoretical basis for five included step-by-step OpenGeoSys exercises, highlighting the most important computational areas within geothermal resource utilization, including heat diffusion, heat advection in porous and fractured media, and heat convection. The book concludes with an outlook on practical follow-up contributions investigating the numerical simulation of shallow and deep geothermal systems.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media PDF Author: Zhangxin Chen
Publisher: SIAM
ISBN: 9780898718942
Category : Finite element method
Languages : en
Pages : 556

Book Description
Computational Methods for Multiphase Flows in Porous Media offers a fundamental and practical introduction to the use of computational methods, particularly finite element methods, in the simulation of fluid flows in porous media. It is the first book to cover a wide variety of flows, including single-phase, two-phase, black oil, volatile, compositional, nonisothermal, and chemical compositional flows in both ordinary porous and fractured porous media. In addition, a range of computational methods are used, and benchmark problems of nine comparative solution projects organized by the Society of Petroleum Engineers are presented for the first time in book form. The book reviews multiphase flow equations and computational methods to introduce basic terminologies and notation. A thorough discussion of practical aspects of the subjects is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Audience: this book can be used as a textbook for graduate or advanced undergraduate students in geology, petroleum engineering, and applied mathematics; as a reference book for professionals in these fields, as well as scientists working in the area of petroleum reservoir simulation; as a handbook for employees in the oil industry who need a basic understanding of modeling and computational method concepts; and by researchers in hydrology, environmental remediation, and some areas of biological tissue modeling. Calculus, physics, and some acquaintance with partial differential equations and simple matrix algebra are necessary prerequisites.

Fluid Dynamics in Complex Fractured-Porous Systems

Fluid Dynamics in Complex Fractured-Porous Systems PDF Author: Boris Faybishenko
Publisher: John Wiley & Sons
ISBN: 1118877225
Category : Science
Languages : en
Pages : 262

Book Description
Despite of many years of studies, predicting fluid flow, heat, and chemical transport in fractured-porous media remains a challenge for scientists and engineers worldwide. This monograph is the third in a series on the dynamics of fluids and transport in fractured rock published by the American Geophysical Union (Geophysical Monograph Series, Vol. 162, 2005; and Geophysical Monograph, No. 122, 2000). This monograph is dedicated to the late Dr. Paul Witherspoon for his seminal influence on the development of ideas and methodologies and the birth of contemporary fractured rock hydrogeology, including such fundamental and applied problems as environmental remediation; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. This monograph addresses fundamental and applied scientific questions and is intended to assist scientists and practitioners bridge gaps in the current scientific knowledge in the areas of theoretical fluids dynamics, field measurements, and experiments for different practical applications. Readers of this book will include researchers, engineers, and professionals within academia, Federal agencies, and industry, as well as graduate/undergraduate students involved in theoretical, experimental, and numerical modeling studies of fluid dynamics and reactive chemical transport in the unsaturated and saturated zones, including studies pertaining to petroleum and geothermal reservoirs, environmental management and remediation, mining, gas storage, and radioactive waste isolation in underground repositories. Volume highlights include discussions of the following: Fundamentals of using a complex systems approach to describe flow and transport in fractured-porous media. Methods of Field Measurements and Experiments Collective behavior and emergent properties of complex fractured rock systems Connection to the surrounding environment Multi-disciplinary research for different applications

Fractured Porous Media

Fractured Porous Media PDF Author: Pierre M. Adler
Publisher: Oxford University Press, USA
ISBN: 0199666512
Category : Science
Languages : en
Pages : 184

Book Description
This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.