Practical Fault-tolerant Quantum Computation

Practical Fault-tolerant Quantum Computation PDF Author: Theodore J. Yoder
Publisher:
ISBN:
Category :
Languages : en
Pages : 201

Book Description
For the past two and a half decades, a subset of the physics community has been focused on building a new type of computer, one that exploits the superposition, interference, and entanglement of quantum states to compute faster than a classical computer on select tasks. Manipulating quantum systems requires great care, however, as they are quite sensitive to many sources of noise. Surpassing the limits of hardware fabrication and control, quantum error-correcting codes can reduce error-rates to arbitrarily low levels, albeit with some overhead. This thesis takes another look at several aspects of stabilizer code quantum error-correction to discover solutions to the practical problems of choosing a code, using it to correct errors, and performing fault-tolerant operations. Our first result looks at limitations on the simplest implementation of fault-tolerant operations, transversality. By defining a new property of stabilizer codes, the disjointness, we find transversal operations on stabilizer codes are limited to the Clifford hierarchy and thus are not universal for computation. Next, we address these limitations by designing non-transversal fault-tolerant operations that can be used to universally compute on some codes. The key idea in our constructions is that error-correction is performed at various points partway through the non-transversal operation (even at points when the code is not-necessarily still a stabilizer code) to catch errors before they spread. Since the operation is thus divided into pieces, we dub this pieceable fault-tolerance. In applying pieceable fault tolerance to the Bacon-Shor family of codes, we find an interesting tradeoff between space and time, where a fault-tolerant controlled-controlled-Z operation takes less time as the code becomes more asymmetric, eventually becoming transversal. Further, with a novel error-correction procedure designed to preserve the coherence of errors, we design a reasonably practical implementation of the controlled-controlled-Z operation on the smallest Bacon-Shor code. Our last contribution is a new family of topological quantum codes, the triangle codes, which operate within the limits of a 2-dimensional plane. These codes can perform all encoded Clifford operations within the plane. Moreover, we describe how to do the same for the popular family of surface codes, by relation to the triangle codes.

Introduction To Quantum Computation And Information

Introduction To Quantum Computation And Information PDF Author: Adriano Barenco
Publisher: World Scientific
ISBN: 9814496359
Category : Science
Languages : en
Pages : 364

Book Description
This book aims to provide a pedagogical introduction to the subjects of quantum information and quantum computation. Topics include non-locality of quantum mechanics, quantum computation, quantum cryptography, quantum error correction, fault-tolerant quantum computation as well as some experimental aspects of quantum computation and quantum cryptography. Only knowledge of basic quantum mechanics is assumed. Whenever more advanced concepts and techniques are used, they are introduced carefully. This book is meant to be a self-contained overview. While basic concepts are discussed in detail, unnecessary technical details are excluded. It is well-suited for a wide audience ranging from physics graduate students to advanced researchers.This book is based on a lecture series held at Hewlett-Packard Labs, Basic Research Institute in the Mathematical Sciences (BRIMS), Bristol from November 1996 to April 1997, and also includes other contributions.

Practical Fault-tolerant Quantum Computing

Practical Fault-tolerant Quantum Computing PDF Author: Naomi Nickerson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Synthesis and Evaluation of Fault-tolerant Quantum Computer Architectures

Synthesis and Evaluation of Fault-tolerant Quantum Computer Architectures PDF Author: Andrew William Cross
Publisher:
ISBN:
Category :
Languages : en
Pages : 247

Book Description
Fault-tolerance is the cornerstone of practical, large-scale quantum computing, pushed into its prominent position with heroic theoretical efforts. The fault-tolerance threshold, which is the component failure probability below which arbitrarily reliable quantum computation becomes possible, is one standard quality measure of fault-tolerant designs based on recursive simulation. However, there is a gulf between theoretical achievements and the physical reality and complexity of envisioned quantum computing systems. This thesis takes a step toward bridging that gap. We develop a new experimental method for estimating fault-tolerance thresholds that applies to realistic models of quantum computer architectures, and demonstrate this technique numerically. We clarify a central problem for experimental approaches to fault-tolerance evaluation--namely, distinguishing between potentially optimistic pseudo-thresholds and actual thresholds that determine scalability. Next, we create a system architecture model for the trapped-ion quantum computer, discuss potential layouts, and numerically estimate the fault-tolerance threshold for this system when it is constrained to a local layout. Finally, we place the problem of evaluation and synthesis of fault-tolerant quantum computers into a broader framework by considering a software architecture for quantum computer design.

Quantum Error Correction and Fault Tolerant Quantum Computing

Quantum Error Correction and Fault Tolerant Quantum Computing PDF Author: Frank Gaitan
Publisher: CRC Press
ISBN: 0849371996
Category : Computers
Languages : en
Pages : 312

Book Description
It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date—quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.

Quantum Computation with Topological Codes

Quantum Computation with Topological Codes PDF Author: Keisuke Fujii
Publisher: Springer
ISBN: 981287996X
Category : Science
Languages : en
Pages : 148

Book Description
This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.

Quantum Error Correction

Quantum Error Correction PDF Author: Daniel A. Lidar
Publisher: Cambridge University Press
ISBN: 0521897874
Category : Computers
Languages : en
Pages : 689

Book Description
Focusing on methods for quantum error correction, this book is invaluable for graduate students and experts in quantum information science.

Fault-tolerant Quantum Computation with Realistic Error Models

Fault-tolerant Quantum Computation with Realistic Error Models PDF Author: James Michael Auger
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Fault-tolerant Quantum Computation with Realistic Error Models

Fault-tolerant Quantum Computation with Realistic Error Models PDF Author: J. M. Auger
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Quantum Error Correction and Fault Tolerant Quantum Computing

Quantum Error Correction and Fault Tolerant Quantum Computing PDF Author: Frank Gaitan
Publisher: CRC Press
ISBN: 1420006681
Category : Computers
Languages : en
Pages : 312

Book Description
It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date—quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.