Author: Atri Sharma
Publisher: Apress
ISBN: 9781484263440
Category : Computers
Languages : en
Pages : 103
Book Description
Gain a thorough knowledge of Lucene's capabilities and use it to develop your own search applications. This book explores the Java-based, high-performance text search engine library used to build search capabilities in your applications. Starting with the basics of Lucene and searching, you will learn about the types of queries used in it and also take a look at scoring models. Applying this basic knowledge, you will develop a hello world app using basic Lucene queries and explore functions like scoring and document level boosting. Along the way you will also uncover the concepts of partial searching and matching in Lucene and then learn how to integrate geographical information (geospatial data) in Lucene using spatial queries and n-dimensional indexing. This will prepare you to build a location-aware search engine with a representative data set that allows location constraints to be specified during a search. You’ll also develop a text classifier using Lucene and Apache Mahout, a popular machine learning framework. After a detailed review of performance bench-marking and common issues associated with it, you’ll learn some of the best practices of tuning the performance of your application. By the end of the book you’ll be able to build your first Lucene patch, where you will not only write your patch, but also test it and ensure it adheres to community coding standards. What You’ll Learn Master the basics of Apache Lucene Utilize different query types in Apache Lucene Explore scoring and document level boosting Integrate geospatial data into your application Who This Book Is For Developers wanting to learn the finer details of Apache Lucene by developing a series of projects with it.
Practical Apache Lucene 8
Author: Atri Sharma
Publisher: Apress
ISBN: 9781484263440
Category : Computers
Languages : en
Pages : 103
Book Description
Gain a thorough knowledge of Lucene's capabilities and use it to develop your own search applications. This book explores the Java-based, high-performance text search engine library used to build search capabilities in your applications. Starting with the basics of Lucene and searching, you will learn about the types of queries used in it and also take a look at scoring models. Applying this basic knowledge, you will develop a hello world app using basic Lucene queries and explore functions like scoring and document level boosting. Along the way you will also uncover the concepts of partial searching and matching in Lucene and then learn how to integrate geographical information (geospatial data) in Lucene using spatial queries and n-dimensional indexing. This will prepare you to build a location-aware search engine with a representative data set that allows location constraints to be specified during a search. You’ll also develop a text classifier using Lucene and Apache Mahout, a popular machine learning framework. After a detailed review of performance bench-marking and common issues associated with it, you’ll learn some of the best practices of tuning the performance of your application. By the end of the book you’ll be able to build your first Lucene patch, where you will not only write your patch, but also test it and ensure it adheres to community coding standards. What You’ll Learn Master the basics of Apache Lucene Utilize different query types in Apache Lucene Explore scoring and document level boosting Integrate geospatial data into your application Who This Book Is For Developers wanting to learn the finer details of Apache Lucene by developing a series of projects with it.
Publisher: Apress
ISBN: 9781484263440
Category : Computers
Languages : en
Pages : 103
Book Description
Gain a thorough knowledge of Lucene's capabilities and use it to develop your own search applications. This book explores the Java-based, high-performance text search engine library used to build search capabilities in your applications. Starting with the basics of Lucene and searching, you will learn about the types of queries used in it and also take a look at scoring models. Applying this basic knowledge, you will develop a hello world app using basic Lucene queries and explore functions like scoring and document level boosting. Along the way you will also uncover the concepts of partial searching and matching in Lucene and then learn how to integrate geographical information (geospatial data) in Lucene using spatial queries and n-dimensional indexing. This will prepare you to build a location-aware search engine with a representative data set that allows location constraints to be specified during a search. You’ll also develop a text classifier using Lucene and Apache Mahout, a popular machine learning framework. After a detailed review of performance bench-marking and common issues associated with it, you’ll learn some of the best practices of tuning the performance of your application. By the end of the book you’ll be able to build your first Lucene patch, where you will not only write your patch, but also test it and ensure it adheres to community coding standards. What You’ll Learn Master the basics of Apache Lucene Utilize different query types in Apache Lucene Explore scoring and document level boosting Integrate geospatial data into your application Who This Book Is For Developers wanting to learn the finer details of Apache Lucene by developing a series of projects with it.
Lucene in Action
Author: Otis Gospodnetic
Publisher: Simon and Schuster
ISBN: 1638354731
Category : Computers
Languages : en
Pages : 742
Book Description
When Lucene first hit the scene five years ago, it was nothing short ofamazing. By using this open-source, highly scalable, super-fast search engine,developers could integrate search into applications quickly and efficiently.A lot has changed since then-search has grown from a "nice-to-have" featureinto an indispensable part of most enterprise applications. Lucene now powerssearch in diverse companies including Akamai, Netflix, LinkedIn,Technorati, HotJobs, Epiphany, FedEx, Mayo Clinic, MIT, New ScientistMagazine, and many others. Some things remain the same, though. Lucene still delivers high-performancesearch features in a disarmingly easy-to-use API. Due to its vibrant and diverseopen-source community of developers and users, Lucene is relentlessly improving,with evolutions to APIs, significant new features such as payloads, and ahuge increase (as much as 8x) in indexing speed with Lucene 2.3. And with clear writing, reusable examples, and unmatched advice on bestpractices, Lucene in Action, Second Edition is still the definitive guide todeveloping with Lucene. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Publisher: Simon and Schuster
ISBN: 1638354731
Category : Computers
Languages : en
Pages : 742
Book Description
When Lucene first hit the scene five years ago, it was nothing short ofamazing. By using this open-source, highly scalable, super-fast search engine,developers could integrate search into applications quickly and efficiently.A lot has changed since then-search has grown from a "nice-to-have" featureinto an indispensable part of most enterprise applications. Lucene now powerssearch in diverse companies including Akamai, Netflix, LinkedIn,Technorati, HotJobs, Epiphany, FedEx, Mayo Clinic, MIT, New ScientistMagazine, and many others. Some things remain the same, though. Lucene still delivers high-performancesearch features in a disarmingly easy-to-use API. Due to its vibrant and diverseopen-source community of developers and users, Lucene is relentlessly improving,with evolutions to APIs, significant new features such as payloads, and ahuge increase (as much as 8x) in indexing speed with Lucene 2.3. And with clear writing, reusable examples, and unmatched advice on bestpractices, Lucene in Action, Second Edition is still the definitive guide todeveloping with Lucene. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Lucene 4 Cookbook
Author: Edwood Ng
Publisher: Packt Publishing Ltd
ISBN: 1782162291
Category : Computers
Languages : en
Pages : 220
Book Description
Lucene 4 Cookbook is a practical guide that shows you how to build a scalable search engine for your application, from an internal documentation search to a wide-scale web implementation with millions of records. Starting with helping you to successfully install Apache Lucene, it will guide you through creating your first search application. Furthermore, the book walks you through analyzing your text and indexing your data to leverage the performance of your search application. As you progress through the chapters, you will learn to effectively search your indexes and successfully employ real-time searching. The chapters start off with simple concepts and build up to complex solutions that should help you on your way to becoming a search engine expert.
Publisher: Packt Publishing Ltd
ISBN: 1782162291
Category : Computers
Languages : en
Pages : 220
Book Description
Lucene 4 Cookbook is a practical guide that shows you how to build a scalable search engine for your application, from an internal documentation search to a wide-scale web implementation with millions of records. Starting with helping you to successfully install Apache Lucene, it will guide you through creating your first search application. Furthermore, the book walks you through analyzing your text and indexing your data to leverage the performance of your search application. As you progress through the chapters, you will learn to effectively search your indexes and successfully employ real-time searching. The chapters start off with simple concepts and build up to complex solutions that should help you on your way to becoming a search engine expert.
Solr in Action
Author: Timothy Potter
Publisher: Simon and Schuster
ISBN: 1638351236
Category : Computers
Languages : en
Pages : 939
Book Description
Summary Solr in Action is a comprehensive guide to implementing scalable search using Apache Solr. This clearly written book walks you through well-documented examples ranging from basic keyword searching to scaling a system for billions of documents and queries. It will give you a deep understanding of how to implement core Solr capabilities. About the Book Whether you're handling big (or small) data, managing documents, or building a website, it is important to be able to quickly search through your content and discover meaning in it. Apache Solr is your tool: a ready-to-deploy, Lucene-based, open source, full-text search engine. Solr can scale across many servers to enable real-time queries and data analytics across billions of documents. Solr in Action teaches you to implement scalable search using Apache Solr. This easy-to-read guide balances conceptual discussions with practical examples to show you how to implement all of Solr's core capabilities. You'll master topics like text analysis, faceted search, hit highlighting, result grouping, query suggestions, multilingual search, advanced geospatial and data operations, and relevancy tuning. This book assumes basic knowledge of Java and standard database technology. No prior knowledge of Solr or Lucene is required. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. What's Inside How to scale Solr for big data Rich real-world examples Solr as a NoSQL data store Advanced multilingual, data, and relevancy tricks Coverage of versions through Solr 4.7 About the Authors Trey Grainger is a director of engineering at CareerBuilder. Timothy Potter is a senior member of the engineering team at LucidWorks. The authors work on the scalability and reliability of Solr, as well as on recommendation engine and big data analytics technologies. Table of Contents PART 1 MEET SOLR Introduction to Solr Getting to know Solr Key Solr concepts Configuring Solr Indexing Text analysis PART 2 CORE SOLR CAPABILITIES Performing queries and handling results Faceted search Hit highlighting Query suggestions Result grouping/field collapsing Taking Solr to production PART 3 TAKING SOLR TO THE NEXT LEVEL SolrCloud Multilingual search Complex query operations Mastering relevancy
Publisher: Simon and Schuster
ISBN: 1638351236
Category : Computers
Languages : en
Pages : 939
Book Description
Summary Solr in Action is a comprehensive guide to implementing scalable search using Apache Solr. This clearly written book walks you through well-documented examples ranging from basic keyword searching to scaling a system for billions of documents and queries. It will give you a deep understanding of how to implement core Solr capabilities. About the Book Whether you're handling big (or small) data, managing documents, or building a website, it is important to be able to quickly search through your content and discover meaning in it. Apache Solr is your tool: a ready-to-deploy, Lucene-based, open source, full-text search engine. Solr can scale across many servers to enable real-time queries and data analytics across billions of documents. Solr in Action teaches you to implement scalable search using Apache Solr. This easy-to-read guide balances conceptual discussions with practical examples to show you how to implement all of Solr's core capabilities. You'll master topics like text analysis, faceted search, hit highlighting, result grouping, query suggestions, multilingual search, advanced geospatial and data operations, and relevancy tuning. This book assumes basic knowledge of Java and standard database technology. No prior knowledge of Solr or Lucene is required. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. What's Inside How to scale Solr for big data Rich real-world examples Solr as a NoSQL data store Advanced multilingual, data, and relevancy tricks Coverage of versions through Solr 4.7 About the Authors Trey Grainger is a director of engineering at CareerBuilder. Timothy Potter is a senior member of the engineering team at LucidWorks. The authors work on the scalability and reliability of Solr, as well as on recommendation engine and big data analytics technologies. Table of Contents PART 1 MEET SOLR Introduction to Solr Getting to know Solr Key Solr concepts Configuring Solr Indexing Text analysis PART 2 CORE SOLR CAPABILITIES Performing queries and handling results Faceted search Hit highlighting Query suggestions Result grouping/field collapsing Taking Solr to production PART 3 TAKING SOLR TO THE NEXT LEVEL SolrCloud Multilingual search Complex query operations Mastering relevancy
Elasticsearch: The Definitive Guide
Author: Clinton Gormley
Publisher: "O'Reilly Media, Inc."
ISBN: 1449358500
Category : Computers
Languages : en
Pages : 659
Book Description
Whether you need full-text search or real-time analytics of structured data—or both—the Elasticsearch distributed search engine is an ideal way to put your data to work. This practical guide not only shows you how to search, analyze, and explore data with Elasticsearch, but also helps you deal with the complexities of human language, geolocation, and relationships. If you’re a newcomer to both search and distributed systems, you’ll quickly learn how to integrate Elasticsearch into your application. More experienced users will pick up lots of advanced techniques. Throughout the book, you’ll follow a problem-based approach to learn why, when, and how to use Elasticsearch features. Understand how Elasticsearch interprets data in your documents Index and query your data to take advantage of search concepts such as relevance and word proximity Handle human language through the effective use of analyzers and queries Summarize and group data to show overall trends, with aggregations and analytics Use geo-points and geo-shapes—Elasticsearch’s approaches to geolocation Model your data to take advantage of Elasticsearch’s horizontal scalability Learn how to configure and monitor your cluster in production
Publisher: "O'Reilly Media, Inc."
ISBN: 1449358500
Category : Computers
Languages : en
Pages : 659
Book Description
Whether you need full-text search or real-time analytics of structured data—or both—the Elasticsearch distributed search engine is an ideal way to put your data to work. This practical guide not only shows you how to search, analyze, and explore data with Elasticsearch, but also helps you deal with the complexities of human language, geolocation, and relationships. If you’re a newcomer to both search and distributed systems, you’ll quickly learn how to integrate Elasticsearch into your application. More experienced users will pick up lots of advanced techniques. Throughout the book, you’ll follow a problem-based approach to learn why, when, and how to use Elasticsearch features. Understand how Elasticsearch interprets data in your documents Index and query your data to take advantage of search concepts such as relevance and word proximity Handle human language through the effective use of analyzers and queries Summarize and group data to show overall trends, with aggregations and analytics Use geo-points and geo-shapes—Elasticsearch’s approaches to geolocation Model your data to take advantage of Elasticsearch’s horizontal scalability Learn how to configure and monitor your cluster in production
Taming Text
Author: Grant Ingersoll
Publisher: Simon and Schuster
ISBN: 1638353867
Category : Computers
Languages : en
Pages : 467
Book Description
Summary Taming Text, winner of the 2013 Jolt Awards for Productivity, is a hands-on, example-driven guide to working with unstructured text in the context of real-world applications. This book explores how to automatically organize text using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. The book guides you through examples illustrating each of these topics, as well as the foundations upon which they are built. About this Book There is so much text in our lives, we are practically drowningin it. Fortunately, there are innovative tools and techniquesfor managing unstructured information that can throw thesmart developer a much-needed lifeline. You'll find them in thisbook. Taming Text is a practical, example-driven guide to working withtext in real applications. This book introduces you to useful techniques like full-text search, proper name recognition,clustering, tagging, information extraction, and summarization.You'll explore real use cases as you systematically absorb thefoundations upon which they are built.Written in a clear and concise style, this book avoids jargon, explainingthe subject in terms you can understand without a backgroundin statistics or natural language processing. Examples arein Java, but the concepts can be applied in any language. Written for Java developers, the book requires no prior knowledge of GWT. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. Winner of 2013 Jolt Awards: The Best Books—one of five notable books every serious programmer should read. What's Inside When to use text-taming techniques Important open-source libraries like Solr and Mahout How to build text-processing applications About the Authors Grant Ingersoll is an engineer, speaker, and trainer, a Lucenecommitter, and a cofounder of the Mahout machine-learning project. Thomas Morton is the primary developer of OpenNLP and Maximum Entropy. Drew Farris is a technology consultant, software developer, and contributor to Mahout,Lucene, and Solr. "Takes the mystery out of verycomplex processes."—From the Foreword by Liz Liddy, Dean, iSchool, Syracuse University Table of Contents Getting started taming text Foundations of taming text Searching Fuzzy string matching Identifying people, places, and things Clustering text Classification, categorization, and tagging Building an example question answering system Untamed text: exploring the next frontier
Publisher: Simon and Schuster
ISBN: 1638353867
Category : Computers
Languages : en
Pages : 467
Book Description
Summary Taming Text, winner of the 2013 Jolt Awards for Productivity, is a hands-on, example-driven guide to working with unstructured text in the context of real-world applications. This book explores how to automatically organize text using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. The book guides you through examples illustrating each of these topics, as well as the foundations upon which they are built. About this Book There is so much text in our lives, we are practically drowningin it. Fortunately, there are innovative tools and techniquesfor managing unstructured information that can throw thesmart developer a much-needed lifeline. You'll find them in thisbook. Taming Text is a practical, example-driven guide to working withtext in real applications. This book introduces you to useful techniques like full-text search, proper name recognition,clustering, tagging, information extraction, and summarization.You'll explore real use cases as you systematically absorb thefoundations upon which they are built.Written in a clear and concise style, this book avoids jargon, explainingthe subject in terms you can understand without a backgroundin statistics or natural language processing. Examples arein Java, but the concepts can be applied in any language. Written for Java developers, the book requires no prior knowledge of GWT. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. Winner of 2013 Jolt Awards: The Best Books—one of five notable books every serious programmer should read. What's Inside When to use text-taming techniques Important open-source libraries like Solr and Mahout How to build text-processing applications About the Authors Grant Ingersoll is an engineer, speaker, and trainer, a Lucenecommitter, and a cofounder of the Mahout machine-learning project. Thomas Morton is the primary developer of OpenNLP and Maximum Entropy. Drew Farris is a technology consultant, software developer, and contributor to Mahout,Lucene, and Solr. "Takes the mystery out of verycomplex processes."—From the Foreword by Liz Liddy, Dean, iSchool, Syracuse University Table of Contents Getting started taming text Foundations of taming text Searching Fuzzy string matching Identifying people, places, and things Clustering text Classification, categorization, and tagging Building an example question answering system Untamed text: exploring the next frontier
Mastering Apache Solr 7.x
Author: Sandeep Nair
Publisher: Packt Publishing Ltd
ISBN: 1788831551
Category : Computers
Languages : en
Pages : 304
Book Description
Accelerate your enterprise search engine and bring relevancy in your search analytics Key Features A practical guide in building expertise with Indexing, Faceting, Clustering and Pagination Master the management and administration of Enterprise Search Applications and services seamlessly Handle multiple data inputs such as JSON, xml, pdf, doc, xls,ppt, csv and much more. Book Description Apache Solr is the only standalone enterprise search server with a REST-like application interface. providing highly scalable, distributed search and index replication for many of the world's largest internet sites. To begin with, you would be introduced to how you perform full text search, multiple filter search, perform dynamic clustering and so on helping you to brush up the basics of Apache Solr. You will also explore the new features and advanced options released in Apache Solr 7.x which will get you numerous performance aspects and making data investigation simpler, easier and powerful. You will learn to build complex queries, extensive filters and how are they compiled in your system to bring relevance in your search tools. You will learn to carry out Solr scoring, elements affecting the document score and how you can optimize or tune the score for the application at hand. You will learn to extract features of documents, writing complex queries in re-ranking the documents. You will also learn advanced options helping you to know what content is indexed and how the extracted content is indexed. Throughout the book, you would go through complex problems with solutions along with varied approaches to tackle your business needs. By the end of this book, you will gain advanced proficiency to build out-of-box smart search solutions for your enterprise demands. What you will learn Design schema using schema API to access data in the database Advance querying and fine-tuning techniques for better performance Get to grips with indexing using Client API Set up a fault tolerant and highly available server with newer distributed capabilities, SolrCloud Explore Apache Tika to upload data with Solr Cell Understand different data operations that can be done while indexing Master advanced querying through Velocity Search UI, faceting and Query Re-ranking, pagination and spatial search Learn to use JavaScript, Python, SolrJ and Ruby for interacting with Solr Who this book is for The book would rightly appeal to developers, software engineers, data engineers and database architects who are building or seeking to build enterprise-wide effective search engines for business intelligence. Prior experience of Apache Solr or Java programming is must to take the best of this book.
Publisher: Packt Publishing Ltd
ISBN: 1788831551
Category : Computers
Languages : en
Pages : 304
Book Description
Accelerate your enterprise search engine and bring relevancy in your search analytics Key Features A practical guide in building expertise with Indexing, Faceting, Clustering and Pagination Master the management and administration of Enterprise Search Applications and services seamlessly Handle multiple data inputs such as JSON, xml, pdf, doc, xls,ppt, csv and much more. Book Description Apache Solr is the only standalone enterprise search server with a REST-like application interface. providing highly scalable, distributed search and index replication for many of the world's largest internet sites. To begin with, you would be introduced to how you perform full text search, multiple filter search, perform dynamic clustering and so on helping you to brush up the basics of Apache Solr. You will also explore the new features and advanced options released in Apache Solr 7.x which will get you numerous performance aspects and making data investigation simpler, easier and powerful. You will learn to build complex queries, extensive filters and how are they compiled in your system to bring relevance in your search tools. You will learn to carry out Solr scoring, elements affecting the document score and how you can optimize or tune the score for the application at hand. You will learn to extract features of documents, writing complex queries in re-ranking the documents. You will also learn advanced options helping you to know what content is indexed and how the extracted content is indexed. Throughout the book, you would go through complex problems with solutions along with varied approaches to tackle your business needs. By the end of this book, you will gain advanced proficiency to build out-of-box smart search solutions for your enterprise demands. What you will learn Design schema using schema API to access data in the database Advance querying and fine-tuning techniques for better performance Get to grips with indexing using Client API Set up a fault tolerant and highly available server with newer distributed capabilities, SolrCloud Explore Apache Tika to upload data with Solr Cell Understand different data operations that can be done while indexing Master advanced querying through Velocity Search UI, faceting and Query Re-ranking, pagination and spatial search Learn to use JavaScript, Python, SolrJ and Ruby for interacting with Solr Who this book is for The book would rightly appeal to developers, software engineers, data engineers and database architects who are building or seeking to build enterprise-wide effective search engines for business intelligence. Prior experience of Apache Solr or Java programming is must to take the best of this book.
Introduction to Information Retrieval
Author: Christopher D. Manning
Publisher: Cambridge University Press
ISBN: 1139472100
Category : Computers
Languages : en
Pages :
Book Description
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
Publisher: Cambridge University Press
ISBN: 1139472100
Category : Computers
Languages : en
Pages :
Book Description
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
Mahout in Action
Author: Sean Owen
Publisher: Simon and Schuster
ISBN: 1638355371
Category : Computers
Languages : en
Pages : 616
Book Description
Summary Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook. About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java -- no prior experience with Mahout is assumed. Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me
Publisher: Simon and Schuster
ISBN: 1638355371
Category : Computers
Languages : en
Pages : 616
Book Description
Summary Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook. About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java -- no prior experience with Mahout is assumed. Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me
Deep Learning for Search
Author: Tommaso Teofili
Publisher: Simon and Schuster
ISBN: 1638356270
Category : Computers
Languages : en
Pages : 483
Book Description
Summary Deep Learning for Search teaches you how to improve the effectiveness of your search by implementing neural network-based techniques. By the time you're finished with the book, you'll be ready to build amazing search engines that deliver the results your users need and that get better as time goes on! Foreword by Chris Mattmann. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning handles the toughest search challenges, including imprecise search terms, badly indexed data, and retrieving images with minimal metadata. And with modern tools like DL4J and TensorFlow, you can apply powerful DL techniques without a deep background in data science or natural language processing (NLP). This book will show you how. About the Book Deep Learning for Search teaches you to improve your search results with neural networks. You'll review how DL relates to search basics like indexing and ranking. Then, you'll walk through in-depth examples to upgrade your search with DL techniques using Apache Lucene and Deeplearning4j. As the book progresses, you'll explore advanced topics like searching through images, translating user queries, and designing search engines that improve as they learn! What's inside Accurate and relevant rankings Searching across languages Content-based image search Search with recommendations About the Reader For developers comfortable with Java or a similar language and search basics. No experience with deep learning or NLP needed. About the Author Tommaso Teofili is a software engineer with a passion for open source and machine learning. As a member of the Apache Software Foundation, he contributes to a number of open source projects, ranging from topics like information retrieval (such as Lucene and Solr) to natural language processing and machine translation (including OpenNLP, Joshua, and UIMA). He currently works at Adobe, developing search and indexing infrastructure components, and researching the areas of natural language processing, information retrieval, and deep learning. He has presented search and machine learning talks at conferences including BerlinBuzzwords, International Conference on Computational Science, ApacheCon, EclipseCon, and others. You can find him on Twitter at @tteofili. Table of Contents PART 1 - SEARCH MEETS DEEP LEARNING Neural search Generating synonyms PART 2 - THROWING NEURAL NETS AT A SEARCH ENGINE From plain retrieval to text generation More-sensitive query suggestions Ranking search results with word embeddings Document embeddings for rankings and recommendations PART 3 - ONE STEP BEYOND Searching across languages Content-based image search A peek at performance
Publisher: Simon and Schuster
ISBN: 1638356270
Category : Computers
Languages : en
Pages : 483
Book Description
Summary Deep Learning for Search teaches you how to improve the effectiveness of your search by implementing neural network-based techniques. By the time you're finished with the book, you'll be ready to build amazing search engines that deliver the results your users need and that get better as time goes on! Foreword by Chris Mattmann. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning handles the toughest search challenges, including imprecise search terms, badly indexed data, and retrieving images with minimal metadata. And with modern tools like DL4J and TensorFlow, you can apply powerful DL techniques without a deep background in data science or natural language processing (NLP). This book will show you how. About the Book Deep Learning for Search teaches you to improve your search results with neural networks. You'll review how DL relates to search basics like indexing and ranking. Then, you'll walk through in-depth examples to upgrade your search with DL techniques using Apache Lucene and Deeplearning4j. As the book progresses, you'll explore advanced topics like searching through images, translating user queries, and designing search engines that improve as they learn! What's inside Accurate and relevant rankings Searching across languages Content-based image search Search with recommendations About the Reader For developers comfortable with Java or a similar language and search basics. No experience with deep learning or NLP needed. About the Author Tommaso Teofili is a software engineer with a passion for open source and machine learning. As a member of the Apache Software Foundation, he contributes to a number of open source projects, ranging from topics like information retrieval (such as Lucene and Solr) to natural language processing and machine translation (including OpenNLP, Joshua, and UIMA). He currently works at Adobe, developing search and indexing infrastructure components, and researching the areas of natural language processing, information retrieval, and deep learning. He has presented search and machine learning talks at conferences including BerlinBuzzwords, International Conference on Computational Science, ApacheCon, EclipseCon, and others. You can find him on Twitter at @tteofili. Table of Contents PART 1 - SEARCH MEETS DEEP LEARNING Neural search Generating synonyms PART 2 - THROWING NEURAL NETS AT A SEARCH ENGINE From plain retrieval to text generation More-sensitive query suggestions Ranking search results with word embeddings Document embeddings for rankings and recommendations PART 3 - ONE STEP BEYOND Searching across languages Content-based image search A peek at performance