Author: Gourab Majumdar
Publisher: CRC Press
ISBN: 1351262319
Category : Science
Languages : en
Pages : 336
Book Description
The growth of power electronics, centering on inverters and converters as its key system topology, has accelerated recently due to the demand for efficient power conversion. This growth has also been backed up by several evolutionary changes and breakthroughs achieved in the areas of power semiconductor device physics, process technology, and design. However, as power semiconductor technology remains a highly specialized subject, the literature on further research, development, and design in related fields is not adequate. With this in view, two specialists of power semiconductors, well known for their research and contributions to the field, compiled this book as a review volume focusing on power chip and module technologies. The prime purpose is to help researchers, academia, and engineers, engaged in areas related to power devices and power electronics, better understand the evolutionary growth of major power device components, their operating principles, design aspects, application features, and trends. The book is filled with unique topics related to power semiconductors, including tips on state-of-the-art and futuristic-oriented applications. Numerous diagrams, illustrations, and graphics are included to adequately support the content and to make the book extremely attractive as a practical and user-friendly reference book for researchers, technologists, and engineers, as well as a textbook for advanced graduate-level and postgraduate students.
Power Devices for Efficient Energy Conversion
Author: Gourab Majumdar
Publisher: CRC Press
ISBN: 1351262319
Category : Science
Languages : en
Pages : 336
Book Description
The growth of power electronics, centering on inverters and converters as its key system topology, has accelerated recently due to the demand for efficient power conversion. This growth has also been backed up by several evolutionary changes and breakthroughs achieved in the areas of power semiconductor device physics, process technology, and design. However, as power semiconductor technology remains a highly specialized subject, the literature on further research, development, and design in related fields is not adequate. With this in view, two specialists of power semiconductors, well known for their research and contributions to the field, compiled this book as a review volume focusing on power chip and module technologies. The prime purpose is to help researchers, academia, and engineers, engaged in areas related to power devices and power electronics, better understand the evolutionary growth of major power device components, their operating principles, design aspects, application features, and trends. The book is filled with unique topics related to power semiconductors, including tips on state-of-the-art and futuristic-oriented applications. Numerous diagrams, illustrations, and graphics are included to adequately support the content and to make the book extremely attractive as a practical and user-friendly reference book for researchers, technologists, and engineers, as well as a textbook for advanced graduate-level and postgraduate students.
Publisher: CRC Press
ISBN: 1351262319
Category : Science
Languages : en
Pages : 336
Book Description
The growth of power electronics, centering on inverters and converters as its key system topology, has accelerated recently due to the demand for efficient power conversion. This growth has also been backed up by several evolutionary changes and breakthroughs achieved in the areas of power semiconductor device physics, process technology, and design. However, as power semiconductor technology remains a highly specialized subject, the literature on further research, development, and design in related fields is not adequate. With this in view, two specialists of power semiconductors, well known for their research and contributions to the field, compiled this book as a review volume focusing on power chip and module technologies. The prime purpose is to help researchers, academia, and engineers, engaged in areas related to power devices and power electronics, better understand the evolutionary growth of major power device components, their operating principles, design aspects, application features, and trends. The book is filled with unique topics related to power semiconductors, including tips on state-of-the-art and futuristic-oriented applications. Numerous diagrams, illustrations, and graphics are included to adequately support the content and to make the book extremely attractive as a practical and user-friendly reference book for researchers, technologists, and engineers, as well as a textbook for advanced graduate-level and postgraduate students.
Power Devices for Efficient Energy Conversion
Author: Gourab Majumdar
Publisher:
ISBN: 9781351262323
Category : Science
Languages : en
Pages : 0
Book Description
The growth of power electronics, centering on inverters and converters as its key system topology, has accelerated recently due to the demand for efficient power conversion. This growth has also been backed up by several evolutionary changes and breakthroughs achieved in the areas of power semiconductor device physics, process technology, and design. However, as power semiconductor technology remains a highly specialized subject, the literature on further research, development, and design in related fields is not adequate. With this in view, two specialists of power semiconductors, well known for their research and contributions to the field, compiled this book as a review volume focusing on power chip and module technologies. The prime purpose is to help researchers, academia, and engineers, engaged in areas related to power devices and power electronics, better understand the evolutionary growth of major power device components, their operating principles, design aspects, application features, and trends. The book is filled with unique topics related to power semiconductors, including tips on state-of-the-art and futuristic-oriented applications. Numerous diagrams, illustrations, and graphics are included to adequately support the content and to make the book extremely attractive as a practical and user-friendly reference book for researchers, technologists, and engineers, as well as a textbook for advanced graduate-level and postgraduate students.
Publisher:
ISBN: 9781351262323
Category : Science
Languages : en
Pages : 0
Book Description
The growth of power electronics, centering on inverters and converters as its key system topology, has accelerated recently due to the demand for efficient power conversion. This growth has also been backed up by several evolutionary changes and breakthroughs achieved in the areas of power semiconductor device physics, process technology, and design. However, as power semiconductor technology remains a highly specialized subject, the literature on further research, development, and design in related fields is not adequate. With this in view, two specialists of power semiconductors, well known for their research and contributions to the field, compiled this book as a review volume focusing on power chip and module technologies. The prime purpose is to help researchers, academia, and engineers, engaged in areas related to power devices and power electronics, better understand the evolutionary growth of major power device components, their operating principles, design aspects, application features, and trends. The book is filled with unique topics related to power semiconductors, including tips on state-of-the-art and futuristic-oriented applications. Numerous diagrams, illustrations, and graphics are included to adequately support the content and to make the book extremely attractive as a practical and user-friendly reference book for researchers, technologists, and engineers, as well as a textbook for advanced graduate-level and postgraduate students.
GaN Transistors for Efficient Power Conversion
Author: Alex Lidow
Publisher: John Wiley & Sons
ISBN: 1119594421
Category : Science
Languages : en
Pages : 518
Book Description
An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.
Publisher: John Wiley & Sons
ISBN: 1119594421
Category : Science
Languages : en
Pages : 518
Book Description
An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.
Energy Harvesting
Author: Alireza Khaligh
Publisher: CRC Press
ISBN: 1351834029
Category : Science
Languages : en
Pages : 529
Book Description
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.
Publisher: CRC Press
ISBN: 1351834029
Category : Science
Languages : en
Pages : 529
Book Description
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.
Introduction to Energy Technologies for Efficient Power Generation
Author: Alexander V. Dimitrov
Publisher: CRC Press
ISBN: 1498796451
Category : Science
Languages : en
Pages : 245
Book Description
This book serves as a guide for discovering pathways to more efficient energy use. The first part of the book illustrates basic laws of energy conversion and principles of thermodynamics. Laws of energy conservation and direction of energy conversion are formulated in detail, and the types of thermodynamic processes are explained. Also included is the characterization of various types of real energy conversion. The second part of the book discusses types of energy conversion referred to as thermal-energy technologies. The advantages of the co-generation processes and devices operating within the Brayton direct cycle and their adaptively to household energetics are underlined.
Publisher: CRC Press
ISBN: 1498796451
Category : Science
Languages : en
Pages : 245
Book Description
This book serves as a guide for discovering pathways to more efficient energy use. The first part of the book illustrates basic laws of energy conversion and principles of thermodynamics. Laws of energy conservation and direction of energy conversion are formulated in detail, and the types of thermodynamic processes are explained. Also included is the characterization of various types of real energy conversion. The second part of the book discusses types of energy conversion referred to as thermal-energy technologies. The advantages of the co-generation processes and devices operating within the Brayton direct cycle and their adaptively to household energetics are underlined.
Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications
Author: Haitham Abu-Rub
Publisher: John Wiley & Sons
ISBN: 1118755502
Category : Technology & Engineering
Languages : en
Pages : 1080
Book Description
Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book
Publisher: John Wiley & Sons
ISBN: 1118755502
Category : Technology & Engineering
Languages : en
Pages : 1080
Book Description
Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book
Piezoelectric Energy Harvesting
Author: Alper Erturk
Publisher: John Wiley & Sons
ISBN: 1119991358
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.
Publisher: John Wiley & Sons
ISBN: 1119991358
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.
Direct Energy Conversion
Author: Andrea M. Mitofsky
Publisher: Createspace Independent Publishing Platform
ISBN: 9781725864429
Category : Direct energy conversion
Languages : en
Pages : 384
Book Description
Direct Energy Conversion discusses both the physics behind energy conversion processes and a wide variety of energy conversion devices. A direct energy conversion process converts one form of energy to another through a single process. The first half of this book surveys multiple devices that convert to or from electricity including piezoelectric devices, antennas, solar cells, light emitting diodes, lasers, thermoelectric devices, and batteries. In these chapters, physical effects are discussed, terminology used by engineers in the discipline is introduced, and insights into material selection is studied. The second part of this book puts concepts of energy conversion in a more abstract framework. These chapters introduce the idea of calculus of variations and illuminate relationships between energy conversion processes.This peer-reviewed book is used for a junior level electrical engineering class at Trine University. However, it is intended not just for electrical engineers. Direct energy conversion is a fascinating topic because it does not fit neatly into a single discipline. This book also should be of interest to physicists, chemists, mechanical engineers, and other researchers interested in an introduction to the energy conversion devices studied by scientists and engineers in other disciplines.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781725864429
Category : Direct energy conversion
Languages : en
Pages : 384
Book Description
Direct Energy Conversion discusses both the physics behind energy conversion processes and a wide variety of energy conversion devices. A direct energy conversion process converts one form of energy to another through a single process. The first half of this book surveys multiple devices that convert to or from electricity including piezoelectric devices, antennas, solar cells, light emitting diodes, lasers, thermoelectric devices, and batteries. In these chapters, physical effects are discussed, terminology used by engineers in the discipline is introduced, and insights into material selection is studied. The second part of this book puts concepts of energy conversion in a more abstract framework. These chapters introduce the idea of calculus of variations and illuminate relationships between energy conversion processes.This peer-reviewed book is used for a junior level electrical engineering class at Trine University. However, it is intended not just for electrical engineers. Direct energy conversion is a fascinating topic because it does not fit neatly into a single discipline. This book also should be of interest to physicists, chemists, mechanical engineers, and other researchers interested in an introduction to the energy conversion devices studied by scientists and engineers in other disciplines.
DC—DC Converters for Future Renewable Energy Systems
Author: Neeraj Priyadarshi
Publisher: Springer Nature
ISBN: 9811643881
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.
Publisher: Springer Nature
ISBN: 9811643881
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.
Sustainable Materials and Green Processing for Energy Conversion
Author: Kuan Yew Cheong
Publisher: Elsevier
ISBN: 0128228385
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices Focuses on designing of materials through green-processing concepts Highlights challenges and opportunities in green processing of renewable materials for energy devices
Publisher: Elsevier
ISBN: 0128228385
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices Focuses on designing of materials through green-processing concepts Highlights challenges and opportunities in green processing of renewable materials for energy devices