Post-growth Manipulation of Transition Metal Dichalcogenides Thin Film

Post-growth Manipulation of Transition Metal Dichalcogenides Thin Film PDF Author: Quan Ma
Publisher:
ISBN: 9781321320190
Category : Molybdenum disulfide
Languages : en
Pages : 84

Book Description
The intense interest in graphene as the prototype 2D electronic material has recently been complemented by the investigation of layered transition metal dichalcogenides (TMD), notably MoS2 and MoSe2 . These materials provide the favorable mechanical properties of graphene, but exhibit a direct bandgap without the need for nanostructuring, chemical functionalization, or the application of a strong electric field to bilayers. As a monolayer, MoS2 becomes a direct-gap semiconductor with a gap of 1.8 eV. In this dissertation, X-ray photoelectron spectroscopy (XPS), photoluminescence, spectroscopy and high-resolution angle resolved photoemission spectroscopy (ARPES) have been used to investigate monolayer and alloy thin films grown on various substrates. My research focuses on the thin film modification and characterization, composition analysis, low-energy argon ion sputtering process and bandgap tuning.

GROWTH OF TRANSITION METAL DIC

GROWTH OF TRANSITION METAL DIC PDF Author: Lu Jiao
Publisher: Open Dissertation Press
ISBN: 9781361011973
Category : Science
Languages : en
Pages : 118

Book Description
This dissertation, "Growth of Transition Metal Dichalcogenide Thin Films by Molecular Beam Epitaxy" by Lu, Jiao, 焦璐, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Atomically thin transition metal dichalcogenides (TMD) have attracted intensive research interests due to their extraordinary properties and potential applications in electronics and optoelectronics. In this thesis, epitaxial growths of two-dimensional (2D) MoSe2 and WSe2 thin films were carried out in Molecular Beam Epitaxy (MBE). Multiple characterization techniques were employed to investigate thin films' structural, morphological, electronic and optical properties. A series of submonolayer MoSe2 coverage samples have been grown on highly ordered pyrolytic graphite (HOPG) substrate. Growth temperature and post-growth annealing temperature were seen to have obvious impacts on film's morphology and crystal quality. Layer-by-layer growth mode has been identified for the Van der Waals epitaxy of MoSe2 on HOPG. Dense networks of inversion domain boundaries (IDBs) have been observed in as-grown MoSe2 epifilms by scanning tunneling microscopy (STM) and transmission electron microscopy (TEM), and their density can be tuned by changing the MBE conditions. Scanning tunneling spectroscopy (STS) measurements reveal mid-gap electronic states associated with the IDB defects. STS measurements also reveal energy bandgaps of monolayer (ML) and bilayer (BL) MoSe2. ML WSe2 thin films were also grown at varying conditions on HOPG substrates through the Van der Waals epitaxy process and the growth characteristics were found similar to that of MoSe2. However, differences are also noted, particularly about the IDB defects. Contrary to MoSe2, as-grown WSe2 films do not contain the line defects. The reason behind such differences will be discussed. Finally, besides the STM/S studies about the morphological and electronic properties of MBE MoSe2 and WSe2 films, high quality samples have been synthesized on graphene-on-SiC substrate with reduced defect density and well-controlled thicknesses for some ex situ characterizations by photoluminescence and Raman spectroscopy methods. The results will be summarized and discussed in this thesis. Subjects: Molecular beam epitaxy Metallic films

Growth of Transition Metal Dichalcogenide Thin Films by Molecular Beam Epitaxy

Growth of Transition Metal Dichalcogenide Thin Films by Molecular Beam Epitaxy PDF Author: 焦璐
Publisher:
ISBN:
Category : Metallic films
Languages : en
Pages : 0

Book Description


Chemical Vapor Deposition Growth of Transition Metal Dichalcogenides and Their Heterostructure Integration

Chemical Vapor Deposition Growth of Transition Metal Dichalcogenides and Their Heterostructure Integration PDF Author: Sajeevi Sankalpani Withanage
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Book Description
Two-dimensional transition metal dichalcogenides (TMDs) are of great interest for the discovery of many novel physics owing to their extraordinary electrical, optical, mechanical properties as well as many promising applications including heterojunctions. To realize the overreaching goals of these materials, it is important to develop scalable growth techniques and investigate the role of different growth parameters on the resulting material properties. In this dissertation, I study, (i) controllable and reproducible growth of monolayer molybdenum disulfide (MoS2) via chemical vapor deposition (CVD), (ii) the role of growth temperature on the properties of large area MoS2 thin films grown via thermal vapor sulfurization route, and (iii) low temperature growth of palladium diselenide (PdSe2) thin films, their doping and integration into heterojunctions. In particular, for the growth of MoS2 monolayer crystals, I modified the CVD process by using molybdenum trioxide thin films as a precursor addressing the difficulty of controlling the local variations of the precursor concentrations in the conventional method resulting in highly reproducible MoS2 crystal growth. For large area MoS2 thin films, I show that the electrical properties of the samples change significantly with growth temperature and discuss the challenges in using Si/SiO2 substrates for the direct growth of these films, specially at high temperature. For PdSe2 thin films, I studied the changes in electrical, chemical, and crystalline quality of the PdSe2 films grown under low pressure CVD conditions below 400 °C and showed its integration with molybdenum diselenide to fabricate a vertical heterojunction diode with a high rectification ratio. I have also investigated the surface charge transfer doping of PdSe2 devices and used it toward fabrication of lateral heterojunction diode by selective area doping. The TMD synthesis, doping, and heterojunction integrations shown in this study is a significant step forward for the scalable fabrication of photodetectors, sensors, logic circuits, and other high-performance electronic devices.

Two Dimensional Transition Metal Dichalcogenides

Two Dimensional Transition Metal Dichalcogenides PDF Author: Narayanasamy Sabari Arul
Publisher: Springer
ISBN: 9811390452
Category : Technology & Engineering
Languages : en
Pages : 361

Book Description
This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Pulsed Laser Deposition Growth and Characterization of Transition Metal Oxide Thin Films

Pulsed Laser Deposition Growth and Characterization of Transition Metal Oxide Thin Films PDF Author: Chollada Warmsingh
Publisher:
ISBN:
Category : Thin films
Languages : en
Pages : 232

Book Description


Engineering Defects, Dopants, and Layering in 2D Transition Metal Dichalcogenides

Engineering Defects, Dopants, and Layering in 2D Transition Metal Dichalcogenides PDF Author: Riccardo Torsi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Two-dimensional transition metal dichalcogenides (2D TMDs) have remained at the forefront of materials science research ever since their initial discovery over 15 years ago. Similar to graphene, 2D TMDs can be thinned down to atomic thicknesses while maintaining a clean surface free of dangling bonds. A crucial distinction from graphene is that 2D TMDs are semiconductors with band gaps that vary depending on their thickness. In addition, 2D TMDs offer other coveted characteristics, including short channel effect immunity, robust excitonic effects, and strong spin orbit coupling, making them promising for diverse applications such as ultra-scaled electronics, photonics, spintronics, flexible electronics, and biosensors. Despite extensive research and successful laboratory demonstrations showcasing the potential of 2D TMDs, the absence of commercial TMD-based products indicates that these materials are still in a developmental phase, with key challenges that need to be addressed. Since the initial mechanical exfoliation experiments used to isolate thin TMD flakes, a considerable amount of research effort has gone into realizing industrially-adaptive, scalable synthesis methods for large-area TMD films. Vapor-phase synthesis methods have made impressive progress in improving the grain size and orientation of 2D TMD films at the wafer scale. However, the absence of scalable methods for controlling defect density impedes the use of TMDs in various applications. The two-dimensional nature of TMDs make their properties particularly susceptible to crystalline defects, therefore it is crucial to understand how they are formed during synthesis and ultimately develop methods for controlling their density over large areas. Another bottleneck to 2D TMD manufacturing is the realization of doping strategies that are precise, uniform, and stable over time. Lastly, the majority of the large scale synthesis efforts focus on monolayer samples, overlooking the importance of developing growth methods for few-layer TMD films with uniform layer number control. This dissertation demonstrates approaches to control defects, dopants, and layering in the synthesis of 2D TMDs. The thesis first discusses the engineering of chalcogen vacancies in MoS2 films synthesized through metal organic chemical vapor deposition (MOCVD), achieved via post-growth annealing in controlled environments, and its effects on photophysics. Then, it delves into essential considerations about how modifications to the surface of sapphire substrates during the growth process impact the optical and electronic properties of MoS2 epilayers. Having established the synthesis of high-quality MoS2 films and native defect control, the thesis will shift to n-type doping by controlled atomic substitution of Rhenium (Re) down to ppm levels. Introducing Re dopants during the growth process is revealed to suppress chalcogen vacancy formation, leading to MoS2 films with enhanced crystallinity and transport properties. The breakthroughs discussed in this work pave the way for further exploration of dopant-defect interactions in substitutionally doped 2D semiconductors, and how they can be leveraged to improve material quality and the performance of (opto-)electronic devices. Addressing thickness control, the thesis presents a novel interrupted MOCVD growth approach for layer-by-layer epitaxy of MoS2 films with uniform layer number over large areas. Building upon the key findings presented in the thesis, the final chapter presents potential future research avenues like magnetic doping in 2D semiconductors and the deterministic growth and doping of heterodimensional TMDs.

Epitaxial Growth and Properties of Transition Metal Carbide Thin Films

Epitaxial Growth and Properties of Transition Metal Carbide Thin Films PDF Author: Peijiao Fang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Growth and Characterization of Transition Metal Telluride Thin Films

Growth and Characterization of Transition Metal Telluride Thin Films PDF Author: Cheuk Ho Chan
Publisher:
ISBN:
Category : Thin films
Languages : en
Pages : 83

Book Description


2D Metal Carbides and Nitrides (MXenes)

2D Metal Carbides and Nitrides (MXenes) PDF Author: Babak Anasori
Publisher: Springer Nature
ISBN: 3030190269
Category : Technology & Engineering
Languages : en
Pages : 534

Book Description
This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.