Positivity in Algebraic Geometry II PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Positivity in Algebraic Geometry II PDF full book. Access full book title Positivity in Algebraic Geometry II by R.K. Lazarsfeld. Download full books in PDF and EPUB format.

Positivity in Algebraic Geometry II

Positivity in Algebraic Geometry II PDF Author: R.K. Lazarsfeld
Publisher: Springer
ISBN: 3642188109
Category : Mathematics
Languages : en
Pages : 392

Book Description
Two volume work containing a contemporary account on "Positivity in Algebraic Geometry". Both volumes also available as hardcover editions as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete". A good deal of the material has not previously appeared in book form. Volume II is more at the research level and somewhat more specialized than Volume I. Volume II contains a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. Contains many concrete examples, applications, and pointers to further developments

Positivity in Algebraic Geometry II

Positivity in Algebraic Geometry II PDF Author: R.K. Lazarsfeld
Publisher: Springer
ISBN: 3642188109
Category : Mathematics
Languages : en
Pages : 392

Book Description
Two volume work containing a contemporary account on "Positivity in Algebraic Geometry". Both volumes also available as hardcover editions as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete". A good deal of the material has not previously appeared in book form. Volume II is more at the research level and somewhat more specialized than Volume I. Volume II contains a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. Contains many concrete examples, applications, and pointers to further developments

Positivity in Algebraic Geometry I

Positivity in Algebraic Geometry I PDF Author: R.K. Lazarsfeld
Publisher: Springer Science & Business Media
ISBN: 9783540225331
Category : History
Languages : en
Pages : 414

Book Description
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.

Positivity in algebraic geometry 2

Positivity in algebraic geometry 2 PDF Author: R.K. Lazarsfeld
Publisher: Springer Science & Business Media
ISBN: 9783540225348
Category : Mathematics
Languages : en
Pages : 412

Book Description
This two volume work on "Positivity in Algebraic Geometry" contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Whereas Volume I is more elementary, the present Volume II is more at the research level and somewhat more specialized. Both volumes are also available as hardcover edition as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete".

Positivity in algebraic geometry

Positivity in algebraic geometry PDF Author: Robert Lazarsfeld
Publisher:
ISBN: 9783642188114
Category : Geometry, Algebraic
Languages : en
Pages : 404

Book Description


Algebraic Geometry II

Algebraic Geometry II PDF Author: David Mumford
Publisher:
ISBN: 9789380250809
Category : Algebraic varieties
Languages : en
Pages : 0

Book Description
Several generations of students of algebraic geometry have learned the subject from David Mumford's fabled "Red Book" containing notes of his lectures at Harvard University. This book contains what Mumford had intended to be Volume II. It covers the material in the "Red Book" in more depth with several more topics added.

Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry PDF Author: Izzet Coskun
Publisher: American Mathematical Soc.
ISBN: 1470435578
Category : Mathematics
Languages : en
Pages : 386

Book Description
The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.

Positive Polynomials

Positive Polynomials PDF Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 3662046482
Category : Mathematics
Languages : en
Pages : 269

Book Description
Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional analysis, etc.). The main objective of the book is to give useful characterizations of polynomials. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed.

Algebraic Geometry: Salt Lake City 2015

Algebraic Geometry: Salt Lake City 2015 PDF Author: Tommaso de Fernex
Publisher: American Mathematical Soc.
ISBN: 1470435772
Category : Mathematics
Languages : en
Pages : 674

Book Description
This is Part 1 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.

Intersection Theory

Intersection Theory PDF Author: W. Fulton
Publisher: Springer Science & Business Media
ISBN: 3662024217
Category : Mathematics
Languages : en
Pages : 483

Book Description
From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two cen turies, intersection theory has played a central role. Since its role in founda tional crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive his tory of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory. Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to devel op the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appen dices. Some of the examples, and a few of the later sections, require more spe cialized knowledge. The text is designed so that one who understands the con structions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should fa cilitate use as a reference.

Commutative Algebra and Noncommutative Algebraic Geometry

Commutative Algebra and Noncommutative Algebraic Geometry PDF Author: David Eisenbud
Publisher: Cambridge University Press
ISBN: 1107065623
Category : Mathematics
Languages : en
Pages : 463

Book Description
This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 1 contains expository papers ideal for those entering the field.